Adamović, D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algorithm 270, 115–132 (2003)
MathSciNet
MATH
Google Scholar
Adamović, D.: A realization of certain modules for the \(N=4\) superconformal algebra and the affine Lie algebra \(A_{2}^{(1)}\). Transform. Groups 21(2), 299–327 (2016)
MathSciNet
MATH
Google Scholar
Adamović, D., Creutzig, T., Genra, N., Yang, J.: Inverse reduction, in preparation
Adamović, D.: Realizations of simple affine vertex algebras and their modules: the cases \(\widehat{sl(2)}\) and \(\widehat{osp(1,2)}\). Commun. Math. Phys. 366(3), 1025–1067 (2019)
ADS
MathSciNet
MATH
Google Scholar
Adamović, D., Kac, V.G., Frajria, P.M., Papi, P., Per\(\breve{\text{s}}\)e, O.: Finite vs infinite decompositions in conformal embeddings. Commun. Math. Phys. 348(2), 445–473 (2016)
Adamović, D., Kac, V.G., Frajria, P.M., Papi, P., Per\(\breve{\text{ s }}\)e, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras I: structural results. J. Alg. 500, 117–152 (2018)
Adamović, D., Kac, V.G., Frajria, P.M., Papi, P., Per\(\breve{\text{ s }}\)e, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions. Jpn. J. Math. 12(2), 261–315 (2017)
Adamović, D., Lin, X., Milas, A.: ADE subalgebras of the triplet vertex algebra \(W(p)\): \(A\)-series. Commun. Contemp. Math. 15(6), 1350028 (2013)
MathSciNet
MATH
Google Scholar
Adamović, D., Milas, A.: Logarithmic intertwining operators and \(W(2,2p-1)\)-algebras. J. Math. Phys. 48(7), 073503 (2007)
ADS
MathSciNet
MATH
Google Scholar
Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217(6), 2664–2699 (2008)
MathSciNet
MATH
Google Scholar
Adamović, D., Milas, A.: The structure of Zhu’s algebras for certain \(\cal{W}\)-algebras. Adv. Math. 227(6), 2425–2456 (2011)
MathSciNet
MATH
Google Scholar
Adamović, D., Milas, A.: The doublet vertex operator superalgebras \({\cal{A}}(p)\) and \({\cal{A}}_{2, p}\). Contemp. Math. 602, 23–38 (2013)
MATH
Google Scholar
Adamović, D., Milas, A.: Vertex operator (super)algebras and LCFT. J. Phys. A 46(49), 494005 (2013)
MathSciNet
MATH
Google Scholar
Adamović, D., Milas, A.: \(C_2\)-cofinite vertex algebras and their logarithmic modules, in: Conformal Field Theories and Tensor Categories, Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, ed. C. Bai, J. Fuchs, Y.-Z. Huang, L. Kong, I. Runkel and C. Schweigert, Mathematical Lectures from Beijing University, Vol. 2, Springer, New York, 249–270 (2014)
Auger, J., Creutzig, T., Kanade, S., Rupert, M.: Braided Tensor Categories related to \({\cal{B}}_{p}\) Vertex Algebras, Commun. Math. Phys. 378 (2020) no. 1, 219–260
Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. Invent. Math. 218(1), 145–195 (2019)
ADS
MathSciNet
MATH
Google Scholar
Argyres, P.C., Douglas, M.R.: New phenomena in \(SU(3)\) supersymmetric gauge theory. Nucl. Phys. B 448, 93–126 (1995)
ADS
MathSciNet
MATH
Google Scholar
Aganagic, M., Frenkel, E., Okounkov, A.: Quantum \(q\)-Langlands Correspondence. Trans. Moscow Math. Soc. 79, 1–83 (2018)
MathSciNet
MATH
Google Scholar
Arakawa, T.: Representation theory of superconformal algebras and the Kac-Roan-Wakimoto Conjecture. Duke Math. J. 130(3), 435–478 (2005)
MathSciNet
MATH
Google Scholar
Arakawa, T.: Representation theory of \(W\)-algebras. Invent. Math. 169(2), 219–320 (2007)
ADS
MathSciNet
MATH
Google Scholar
Arakawa, T., Creutzig, T., Kawasetsu, K., Linshaw, A.R.: Orbifolds and cosets of minimal \(W\)-algebras. Commun. Math. Phys. 355(1), 339–372 (2017)
ADS
MathSciNet
MATH
Google Scholar
Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Second edition. Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI, xiv+400 pp (2004)
Buican, M., Nishinaka, T.: On the superconformal index of Argyres-Douglas theories. J. Phys. A 49(1), 015401 (2016)
ADS
MathSciNet
MATH
Google Scholar
Buican, M., Nishinaka, T.: On irregular singularity wave functions and superconformal indices. JHEP 1709, 066 (2017)
ADS
MathSciNet
MATH
Google Scholar
Beem, C., Lemos, M., Liendo, P., Peelaers, W., Rastelli, L., van Rees, B.C.: Infinite Chiral Symmetry in Four Dimensions. Commun. Math. Phys. 336(3), 1359–1433 (2015)
ADS
MathSciNet
MATH
Google Scholar
Creutzig, T.: \(W\)-algebras for Argyres-Douglas theories. Euro. J. Math. 3(3), 659–690 (2017)
MathSciNet
MATH
Google Scholar
Creutzig, T.: Fusion categories for affine vertex algebras at admissible levels. Selecta Math 25(2), 21 (2019)
MathSciNet
MATH
Google Scholar
Creutzig, T.: Logarithmic W-algebras and Argyres-Douglas theories at higher rank. JHEP 1811, 188 (2018)
ADS
MathSciNet
MATH
Google Scholar
Creutzig, T., Gainutdinov, A. M., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra, Comm. Contemp. Math. 22, 1950024 (2019), arXiv:1712.07260
Creutzig, T., Huang, Y.-Z., Yang, J.: Braided tensor categories of admissible modules for affine Lie algebras. Commun. Math. Phys. 362(3), 827–854 (2018)
ADS
MathSciNet
MATH
Google Scholar
Creutzig, T., Kanade, S., Linshaw, A.R.: Simple current extensions beyond semi-simplicity. Commun. Contemp. Math. 22, 1950001 (2019)
MathSciNet
MATH
Google Scholar
Creutzig, T., Kanade, S., Linshaw, A.R., Ridout, D.: Schur-Weyl Duality for Heisenberg Cosets. Transform. Groups 24(2), 301–354 (2019)
MathSciNet
MATH
Google Scholar
Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017
Creutzig, T., Kanade, S., McRae, R.: Glueing vertex algebras, arXiv:1906.00119
Creutzig, T., Gaiotto, D.: Vertex Algebras for S-duality, Commun. Math. Phys. 379 (2020) no. 3, 785–845.
Creutzig, T., Gaiotto, D., Linshaw, A. R.: S-duality for the large \(N=4\) superconformal algebra, Comm. Math. Phys. 374 (2020) no. 3, 1787–1808.
Creutzig, T., Gannon, T.: Logarithmic conformal field theory, log-modular tensor categories and modular forms. J. Phys. A 50(40), 404004 (2017)
MathSciNet
MATH
Google Scholar
Creutzig, T., Linshaw, A.R.: Cosets of affine vertex algebras inside larger structures. J. Alg. 517, 396–438 (2019)
MathSciNet
MATH
Google Scholar
Creutzig, T., Ridout, D.: Logarithmic conformal field theory: beyond an introduction. J. Phys. A 46, 494006 (2013)
MathSciNet
MATH
Google Scholar
Creutzig, T., Ridout, D., Wood, S.: Coset constructions of logarithmic \((1, p)\)-models. Lett. Math. Phys. 104(5), 553–583 (2014)
ADS
MathSciNet
MATH
Google Scholar
Creutzig, T., Milas, A.: False Theta Functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014)
MathSciNet
MATH
Google Scholar
Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory. Adv. Math. 314, 203–227 (2017)
MathSciNet
MATH
Google Scholar
Creutzig, T., Milas, A., Wood, S.: On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions. Int. Math. Res. Not. 5, 1390–1432 (2017)
MathSciNet
MATH
Google Scholar
Cordova, C., Shao, S.H.: Schur Indices, BPS Particles, and Argyres-Douglas Theories. JHEP 1601, 040 (2016)
ADS
MathSciNet
MATH
Google Scholar
Creutzig, T., Yang, J.: Tensor category of affine Lie algebras beyond admissble levels, arXiv:2002.05686 [math.RT]
Creutzig, T., Jiang, C., Orosz Hunziker, F., Ridout, D., Yang, J.: Tensor categories arising from the Virasoro algebra, Advances in Mathematics, 380 (2021), 107601.
Dong, C., Li, H., Mason, G.: Compact automorphism groups of vertex operator algebras. Int. Math. Res. Not. 913–921, (1996)
Dong, C., Lepowsky, J.: Abelian intertwining algebras–A generalization of vertex operator algebras, in “Algebraic Groups and Generalizations, Proc. 1991 Amer. Math. Soc. Summer Research Institute (W. Haboush and B. Parshall, Eds.), Proceedings of Symposia in Pure Mathematics., American. Mathematical Society, Providence, (1993)
Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math, vol. 112. Birkhäuser, Boston (1993)
MATH
Google Scholar
van Ekeren, J., Möller, S., Scheithauer, N.: Construction and classification of holomorphic vertex operator algebras. J. Reine Angew. Math. 759, 61–99 (2020)
MathSciNet
MATH
Google Scholar
Feigin, B.L., Frenkel, E.: Quantization of Drinfel’d-Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990)
ADS
MathSciNet
MATH
Google Scholar
Frenkel, E.: Lectures on Wakimoto modules, opers and the center at the critical level. Adv. Math 195, 297–404 (2005)
MathSciNet
MATH
Google Scholar
Frenkel, E., Gaiotto, D.: Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks, arXiv:1805.00203
Feigin, B.L., Gaĭnutdinov, A., Semikhatov, A., Yu Tipunin, I.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys 265, 47–93 (2006)
ADS
MathSciNet
MATH
Google Scholar
Feigin, B.L., Gaĭnutdinov, A., Semikhatov, A., Yu Tipunin, I.: Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT. Theor. Math. Phys. 148(3), 1210–1235 (2006)
MATH
Google Scholar
Feigin, B. L., Yu Tipunin, I.: Logarithmic CFTs connected with simple Lie algebras, arXiv:1002.5047
Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry and string theory. Nucl. Phys. B 271, 93–165 (1986)
ADS
MathSciNet
Google Scholar
Gaiotto, D., Rapcak, M.: Vertex Algebras at the Corner. JHEP 1901, 160 (2019)
ADS
MathSciNet
MATH
Google Scholar
Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)
MathSciNet
MATH
Google Scholar
Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008)
MathSciNet
MATH
Google Scholar
Huang, Y.Z., Kirillov, A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)
ADS
MathSciNet
MATH
Google Scholar
Kumar, S.: Extension of the category \({\cal{O}}^{g}\) and a vanishing theorem for the Ext functor for Kac-Moody algebras. J. Alg. 108(2), 472–491 (1987)
MATH
Google Scholar
Kac, V.G., Frajria, P.M., Papi, P., Xu, F.: Conformal embeddings and simple current extensions. Int. Math. Res. Not. 14, 5229–5288 (2015)
MathSciNet
MATH
Google Scholar
Kazhdan, D., Lusztig, G.: Affine Lie algebras and quatum groups. Int. Math. Res. Not. (in Duke Math. J.) 2, 21–29 (1991)
MATH
Google Scholar
Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, I. J. Am. Math. Soc. 6, 905–947 (1993)
MathSciNet
MATH
Google Scholar
Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)
MathSciNet
MATH
Google Scholar
Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)
MathSciNet
MATH
Google Scholar
Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)
MathSciNet
MATH
Google Scholar
Kapustin, A., Witten, E.: Electric-Magnetic Duality And The Geometric Langlands Program. Commun. Num. Theor. Phys. 1(1), 1–236 (2007)
MathSciNet
MATH
Google Scholar
Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004)
MathSciNet
MATH
Google Scholar
McRae, R.: On the tensor structure of modules for compact orbifold vertex operator algebras, arXiv: 1810.00747
McRae, R.: Twisted modules and \(G\)-equivariantization in logarithmic conformal field theory, Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-020-03882-2, arXiv:1910.13226
Rastelli, L.: Infinite Chiral Symmetry in Four and Six Dimensions, Seminar at Harvard University, November (2014)
Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the \(W_{p}\) triplet algebra. J. Phys. A 46, 445203 (2013)
ADS
MathSciNet
MATH
Google Scholar