Skip to main content
Log in

Geometry of Localized Effective Theories, Exact Semi-classical Approximation and the Algebraic Index

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we propose a general framework to study the quantum geometry of \(\sigma \)-models when they are effectively localized to small quantum fluctuations around constant maps. Such effective theories have surprising exact descriptions at all loops in terms of target geometry and can be rigorously formulated. We illustrate how to turn the physics idea of exact semi-classical approximation into a geometric set-up in this framework, using Gauss–Manin connection. As an application, we carry out this program in details by the example of topological quantum mechanics, and explain how to implement the idea of exact semi-classical approximation into a proof of the algebraic index theorem. The proof resembles much of the physics derivation of Atiyah–Singer index theorem and clarifies the geometric face of many other mathematical constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12(07), 1405–1429 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  2. Alvarez-Gaumé, L.: Supersymmetry and the Atiyah-Singer index theorem. Commun. Math. Phys. 90(2), 161–173 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. Axelrod, S., Singer, IM.: Chern–simons perturbation theory II. J. Diff. Geom., 39(hep-th/9304087):173–213, arXiv:hep-th/9304087 (1993)

  4. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165(2), 311–427 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bessis, D., Itzykson, C., Zuber, J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109–157 (1980)

    Article  MathSciNet  Google Scholar 

  6. Bressler, P., Nest, R., Tsygan, B.: Riemann-Roch theorems via deformation quantization I. Adv. Math. 167(1), 1–25 (2002)

    Article  MathSciNet  Google Scholar 

  7. Bressler, P., Nest, R., Tsygan, B.: Riemann-Roch theorems via deformation quantization II. Adv. Math. 167(1), 26–73 (2002)

    Article  MathSciNet  Google Scholar 

  8. Calaque, D., Van den Bergh, M.: Hochschild cohomology and Atiyah classes. Adv. Math. 224(5), 1839–1889 (2010)

    Article  MathSciNet  Google Scholar 

  9. Calaque, D., Rossi, C.: Compatibility with Cap-Products in Tsygan’s formality and Homological Duflo Isomorphism. Letters in Mathematical Physics, 95:135–209, 02 (2011)

  10. Cattaneo, A.S., Felder, G., Willwacher, T.: The character map in deformation quantization. Adv. Math. 228(4), 1966–1989 (2011)

    Article  MathSciNet  Google Scholar 

  11. Costello, K.: A geometric construction of the Witten genus, I. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), pages 942–959. World Scientific, (2010)

  12. Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, (Mar 2011)

  13. Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory. Vol. 1,2, volume 31 of New Mathematical Monographs. Cambridge University Press, Cambridge, (2017)

  14. Costello, K., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv preprintarXiv:1201.4501, (2012)

  15. Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differential Geom. 40(2), 213–238 (1994)

    Article  MathSciNet  Google Scholar 

  16. Fedosov, B.: Deformation quantization and index theory, volume 9. Akademie Verlag Berlin (1996)

  17. Fedosov, B.: The Atiyah-Bott-Patodi method in deformation quantization. Comm. Math. Phys. 209(3), 691–728 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  18. Feigin, B., Felder, G., Shoikhet, B., et al.: Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127(3), 487–517 (2005)

    Article  MathSciNet  Google Scholar 

  19. Feigin, B. L., Tsygan, BL.: Riemann-Roch theorem and Lie algebra cohomology. In Proceedings of the Winter School” Geometry and Physics”, pages 15–52. Circolo Matematico di Palermo, (1989)

  20. Friedan, D., Windey, P.: Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly. Nucl. Phys. B 235(3), 395–416 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  21. Getzler, E.: Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology. Israel Math. Conf. Proc 7, 65–78 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Getzler, E., Jones, JDS.: Operads, homotopy algebra, and iterated integrals for double loop spaces. In 15 T. Kashiwabara–on the homotopy type of configuration complexes, contemp. math. 146

  23. Gorbounov, V., Gwilliam, O., Williams, B.: Chiral differential operators via Batalin-Vilkovisky quantization. arXiv preprintarXiv:1610.09657 (2016)

  24. Gorokhovsky, A., de Kleijn, N., Nest, R.: Equivariant algebraic index theorem. Journal of the Institute of Mathematics of Jussieu, pages 1–27

  25. Grady, R.E., Li, Q., Li, S.: Batalin-Vilkovisky quantization and the algebraic index. Adv. Math. 317, 575–639 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gwilliam, O., Grady, R.: One-dimensional Chern-Simons theory and the  genus. Algebr. Geom. Topol. 14(4), 2299–2377 (2014)

    Article  MathSciNet  Google Scholar 

  27. Hirzebruch, F., Berger, T., Jung, R.: Manifolds and Modular Forms. (1994)

  28. Hori, K., Thomas, R., Katz, S., Vafa, C., Pandharipande, R., Klemm, A., Vakil, R.,  Zaslow E.: Mirror symmetry, volume 1. American Mathematical Soc., (2003)

  29. Kontsevich, M.: Feynman diagrams and low-dimensional topology. In First European Congress of Mathematics Paris, July 6–10, 1992, pages 97–121. Springer, (1994)

  30. Li, S.: Vertex algebras and quantum master equation. arXiv:1612.01292, (2016)

  31. Pflaum, M.J., Posthuma, H.B., Tang, X.: An algebraic index theorem for orbifolds. Adv. Math. 210(1), 83–121 (2007)

    Article  MathSciNet  Google Scholar 

  32. Moshayedi, N.: On Globalized Traces for the Poisson Sigma Model. arXiv e-prints, arXiv:1912.02435, (2019)

  33. Nest, R., Tsygan, B.: Algebraic index theorem. Comm. Math. Phys. 172(2), 223–262 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  34. Freed, D. S., Jeffrey, L. C., Kazhdan, D., Morgan, J. W., Morrison, D. R., Witten, E., Deligne, P., Etingof, P.: Notes on supersymmetry. In Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, volume Volume 1. American Mathematical Society, 1st edition, (1999)

  35. Pestun, V., Zabzine, M., Benini, F., Dimofte, T., Dumitrescu, Thomas T., Hosomichi, K., Kim, S., Lee, K., Le Floch, B., Marino, M., et al.: Localization techniques in quantum field theories. Journal of Physics A: Mathematical and Theoretical, 50(44):440301, (2017)

  36. Pflaum, M.J., Posthuma, H., Tang, X.: Cyclic cocycles on deformation quantizations and higher index theorems. Advances in Mathematics 223(6), 1958–2021 (2010)

    Article  MathSciNet  Google Scholar 

  37. Williams, B.R.: Renormalization for holomorphic field theories. Commun. Math. Phys. 374(3), 1693–1742 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  38. Willwacher, T.: Cyclic cohomology of the weyl algebra. J. Algebra 425, 277–312 (2015)

    Article  MathSciNet  Google Scholar 

  39. Witten, E.: Supersymmetry and Morse theory. J. diff. geom 17(4), 661–692 (1982)

    Article  MathSciNet  Google Scholar 

  40. Witten, E.: Introduction to cohomological field theories. Int. J. Mod. Phys. A 6(16), 2775–2792 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  41. Witten, E.: Mirror manifolds and topological field theory. Essays on mirror manifolds, pages 120–158, (1992)

  42. Witten, E.: Index of Dirac operators. Quantum Fields Strings Course Math. 1(2), 475–511 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Vladimir Baranovsky, Owen Gwilliam, Weiqiang He, Qin Li, Yifan Li, Ryszard Nest, Xiang Tang, Michèle Vergne, Brian Williams, Edward Witten, Jie Zhou for helpful discussions. We are specially grateful to Michèle Vergne for providing numerous valuable suggestions on the earlier version of this manuscript. This work was partially supported by National Key Research and Development Program of China (NO. 2020YFA0713000), Beijing Municipal Natural Science Foundation (NO. Z180003), and National Natural Science Foundation of China (NO. 11801300). Part of this work was done in Fall 2019 while S.L. was visiting Institute for Advanced Study at Princeton and Z.G. was visiting Center of Mathematical Sciences and Applications at Harvard. We thank for their hospitality and provision of excellent working enviroment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Li.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, Z., Li, S. & Xu, K. Geometry of Localized Effective Theories, Exact Semi-classical Approximation and the Algebraic Index. Commun. Math. Phys. 382, 441–483 (2021). https://doi.org/10.1007/s00220-021-03944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-03944-z

Navigation