Skip to main content
Log in

Multi-scale Analysis of Random Alloy Models with Summable Site Potentials of Infinite Range

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a reformulation of the probabilistic component of the Multi-Scale Analysis adapted to the alloy-type Anderson models with a non-negligible dependence at large distances due to an infinite range of the media-particle interaction. Despite a considerable wealth of results accumulated in the spectral theory of random operators with short-range potentials, much less is known about the alloy models with a slow (e.g., inverse polynomial) decay of interaction. Applied to the alloys with a power-law interaction, the new approach gives rise to stronger localization results than in prior works under an optimal assumption (summability) on the single-site potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizenman, M., Molchanov, S.A.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157(2), 245–278 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bourgain, J.: On localization for lattice Schrödinger operators involving Bernoulli variables. Geometric Aspects of Functional Analysis. Lecture Notes Math, p. 1850. Springer, Berlin (2004)

    Google Scholar 

  3. Bourgain, J., Kenig, W.: On localization in the continuous Anderson–Bernoulli model in higher dimension. Invent. Math. 161, 389–426 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chulaevsky, V.: From fixed-energy localization analysis to dynamical localization: an elementary path. J. Stat. Phys. 154, 1391–1429 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chulaevsky, V.: Exponential scaling limit for single-particle Anderson models via adaptive feedback scaling. J. Stat. Phys. 162, 603–614 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chulaevsky, V.: Surface localization in impurity band with random displacements and long-range interactions. Adv. Math. Phys. 18, 7192303 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Combes, J.-M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multi-particle Schrödinger operators. Commun. Math. Phys. 34, 251–263 (1973)

    Article  ADS  Google Scholar 

  8. Damanik, D., Stollmann, P.: Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11(1), 11–29 (2001)

    Article  MathSciNet  Google Scholar 

  9. Elgart, A., Tautenhahn, M., Veselić, I.: Localization via fractional moments for models on Z with single-site potentials of finite support. J. Phys. A 43(8), 474021 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21–46 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gabovich, A.M., Ilchenko, L.G., Pashitskii, E.A., Romanov, Y.A.: Screening of charges and Friedel oscillations of the electron density in metals having differently shaped Fermi surfaces. JETP 48, 249–264 (1978)

    Google Scholar 

  13. Germinet, F., De Biévre, S.: Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194, 323–341 (1998)

    Article  ADS  Google Scholar 

  14. Germinet, F., Klein, A.: Bootstrap multi-scale analysis and localization in random media. Commun. Math. Phys. 222, 415–448 (2001)

    Article  ADS  Google Scholar 

  15. Germinet, F., Klein, A.: Explicit finite volume criteria for localization in continuous random media and applicationsx. GAFA Geom. Funct. Anal. 13, 1201–1238 (2003)

    Article  Google Scholar 

  16. Germinet, F., Klein, A.: New characterization of the region of complete localization for random Schrödinger operators. J. Stat. Phys. 122, 73–94 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kirsch, W., Stollmann, P., Stolz, G.: Anderson localization for random Schrödinger operators with long range interactions. Commun. Math. Phys. 195, 495–507 (1998)

    Article  ADS  Google Scholar 

  18. Ostrowski, A.M.: Sur la détermination des bornes inférieures pour une classe des déterminants. Bull. Sci. Math. 61(2), 19–32 (1937)

    MATH  Google Scholar 

  19. Spencer, T.: Localization for random and quasi-periodic potentials. J. Stat. Phys. 51, 1009–1019 (1988)

    Article  ADS  Google Scholar 

  20. Stollmann, P.: Caught by Disorder. Progress in Mathematical Physics, p. 20. Birkhäuser Boston Inc., Boston (2001)

    Book  Google Scholar 

  21. von Dreifus, H.: On the effect of randomness in ferromagnetic models and Schrödinger operators. Ph.D. Thesis, New York University (1987)

  22. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. von Dreifus, H., Klein, A.: Localization for random Schrödinger operators with correlated potentials. Commun. Math. Phys. 140, 133–147 (1991)

    Article  ADS  Google Scholar 

  24. Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B. Condens. Matter 44, 9–15 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Weidmann, J.: Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics, vol. 68. Springer, Berlin (1980)

    Book  Google Scholar 

Download references

Acknowledgements

I am indebted to the Isaac Newton Institute (Cambridge, UK) and to the organisers of the program "Periodic and ergodic spectral problems" (2015) for their support and warm hospitality. The present paper is a part of the project aiming at the analysis of disordered systems with long-range interactions, initiated during my semi-annual stay at the INI and resulting from numerous fruitful discussions with a number of fellow participants from the mathematics and physics community whom I thank with pleasure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Chulaevsky.

Additional information

Communicated by W. Schlag

Dedicated to the memory of Jean Bourgain

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulaevsky, V. Multi-scale Analysis of Random Alloy Models with Summable Site Potentials of Infinite Range. Commun. Math. Phys. 381, 557–590 (2021). https://doi.org/10.1007/s00220-020-03917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03917-8

Navigation