Skip to main content
Log in

Stochastic Lagrangian Path for Leray’s Solutions of 3D Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we show the existence of stochastic Lagrangian particle trajectory for Leray’s solution of 3D Navier–Stokes equations. More precisely, for any Leray’s solution \(\mathbf{u }\) of 3D-NSE and each \((s,x)\in \mathbb {R}_+\times \mathbb {R}^3\), we show the existence of weak solutions to the following SDE, which have densities \(\rho _{s,x}(t,y)\) belonging to \(\mathbb {H}^{1,p}_q\) with \(p,q\in [1,2)\) and \(\frac{3}{p}+\frac{2}{q}>4\):

$$\begin{aligned} \text {d} X_{s,t}=\mathbf{u } (s,X_{s,t})\text {d} t+\sqrt{2\nu }\text {d} W_t,\ \ X_{s,s}=x,\ \ t\geqslant s, \end{aligned}$$

where W is a three dimensional standard Brownian motion, \(\nu >0\) is the viscosity constant. Moreover, we also show that for Lebesgue almost all (sx), the solution \(X^n_{s,\cdot }(x)\) of the above SDE associated with the mollifying velocity field \(\mathbf{u }_n\) weakly converges to \(X_{s,\cdot }(x)\) so that X is a Markov process in almost sure sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequaity for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–273 (1982)

    Article  Google Scholar 

  2. Bass, R.F., Chen, Z.Q.: Brownian motion with singular drift. Ann. Probabil. 31(2), 791–817 (2003)

    Article  MathSciNet  Google Scholar 

  3. Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M.: Stochastic odes and stochastic linear pdes with critical drift: regularity, duality and uniqueness. Electron. J. Probabil. 24, 2019 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier-Stokes equation. Ann. Math. 189(1), 101–144 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chemin, J.Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 121(2), 314–328 (1995)

    Article  ADS  Google Scholar 

  6. Constantin, P., Iyer, G.: A stochastic Lagrangian representation of the three- dimensional incompressible Navier-Stokes equations. Commun. Pure Appl. Math. 61, 330–345 (2008)

    Article  MathSciNet  Google Scholar 

  7. Fedrizzi, E., Flandoli, F.: Noise prevents singularities in linear transport equations. J. Funct. Anal. 264, 1329–1354 (2013)

    Article  MathSciNet  Google Scholar 

  8. Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180, 1–53 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Flandoli, F., Issoglio, E., Russo, F.: Multidimensional stochastic differential equations with distributional drift. Trans. Am. Math. Soc. 369(3), 1665–1688 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  11. Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Sufficient and necessary conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized Boson equations. RIMS Kokyuroku Bessatsu B26, 159–175 (2011)

    MATH  Google Scholar 

  12. Han, Q., Lin, F.: Elliptic Partial Differential Equations, vol. 1. American Mathematical Soc, London (2011)

    MATH  Google Scholar 

  13. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, Vol.24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1989)

  14. Kinzebulatov, D., Semënov, Y.A.: Brownian motion with general drift. Stochast. Process. Appl. 130(5), 2737–2750 (2020)

    Article  MathSciNet  Google Scholar 

  15. Krylov, N.V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131, 154–196 (2005)

    Article  MathSciNet  Google Scholar 

  16. Nazarov, A., Ural’tseva, N.N.: The Harnack inequality and related properties for solutions of elliptic and parabolic equations with divergence-free lower-order coefficients. St. Petersburg Math. J. 23(1), 93–115 (2012)

    Article  MathSciNet  Google Scholar 

  17. Portenko, N.I.: Generalized diffusion processes. Nauka, Moscow. In Russian; English translation: American Mathematical Society, Provdence, Rhode Island 1990 (1982)

  18. Qian, Z., Xi, G.: Parabolic equations with divergence-free drift in space \(L_ {t}^{l} L_ {x}^{q}\). J. London Math. Soc. 100(2), 17–40 (2019)

    Article  MathSciNet  Google Scholar 

  19. Rezakhanlou, F.: Regular flows for diffusions with rough drifts. arXiv preprint arXiv:1405.5856 (2014)

  20. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations: Classical Theory. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  21. Simon, J.: Compact sets in the space \(L^{p} ([0, T];B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    Article  ADS  Google Scholar 

  22. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  23. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer, Berlin (1979)

    Google Scholar 

  24. Triebel, H.: Theory of function spaces II. Reprinted 2010 by Springer Basel AG

  25. Veretennikov, A.: On the strong solutions of stochastic differential equations. Theory Probab. Appl. 24, 354–366 (1979)

    Article  MathSciNet  Google Scholar 

  26. Xi, G.: Parabolic equations and diffusion processes with divergence-free vector fields. Doctoral dissertation, University of Oxford (2018)

  27. Zhang, X.: Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron. J. Probab. 16, 1096–1116 (2011)

    Article  MathSciNet  Google Scholar 

  28. Zhang, X.: A stochastic representation for backward incompressible Navier-Stokes equations. Probab. Theory Relat. Fields 148, 305–332 (2010)

    Article  MathSciNet  Google Scholar 

  29. Zhang, X.: Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull. Sci. Math. France 134, 340–378 (2010)

    Article  MathSciNet  Google Scholar 

  30. Zhang, X.: Stochastic Lagrangian particle approach to fractal Navier-Stokes equations. Commun. Math. Phys. 311, 133–155 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhang, X.: Well-posedness and large deviation for degenerate SDEs with Sobolev coefficients. Rev. Mat. Iberoam. 29(1), 25–52 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X.: Stochastic differential equations with Sobolev diffusion and singular drift. Ann. Appl. Probabil. 26(5), 2697–2732 (2016)

    Article  MathSciNet  Google Scholar 

  33. Zhang, X., Zhao, G.: Heat kernel and ergodicity of SDEs with distributional drifts. arXiv:1710.10537 (2017)

  34. Zhang, X., Zhao, G.: Singular Brownian diffusion processes. Commun. Math. Stat. pp. 1–49 (2018)

  35. Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drift. Mat. Sbornik 93(135), 129–149 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks two referees for their quite useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohuan Zhao.

Additional information

Communicated by M. Hairer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of X. Zhang is partially supported by NNSFC grant of China (No. 11731009). Research of G. Zhao is supported by the German Research Foundation (DFG) through the Collaborative Research Centre (CRC) 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”.

Appendix: Properties of Space \(\widetilde{\mathbb {H}}^{\alpha ,p}_q\)

Appendix: Properties of Space \(\widetilde{\mathbb {H}}^{\alpha ,p}_q\)

In this “Appendix” we prove some important properties about the space \(\widetilde{\mathbb {H}}^{\alpha ,p}_q\). We need the following lemma, which can be found in [24, p.205] and [33, Lemma 2.2].

Lemma 4.1

  1. (i)

    For any \(\alpha \in {\mathbb {R}}\) and \(p\in (1,\infty )\), there is a \(C=C(d,\alpha ,p)>0\) such that

    $$\begin{aligned} \Vert fg\Vert _{\alpha ,p}\leqslant C\Vert f\Vert _{\alpha ,p}\Vert g\Vert _{|\alpha |+1,\infty }. \end{aligned}$$
    (4.1)
  2. (ii)

    Let \(p\in (1,\infty )\) and \(\alpha \in (0,1]\) be fixed. For any \(p_1\in [p,\infty )\) and \(p_2\in [\frac{p_1}{p_1-1},\infty )\) with \(\frac{1}{p}\leqslant \frac{1}{p_1}+\frac{1}{p_2}<\frac{1}{p}+\frac{\alpha }{d}\), there is a constant \(C>0\) such that for all \(f\in H^{-\alpha ,p_1}\) and \(g\in H^{\alpha ,p_2}\),

    $$\begin{aligned} \Vert fg\Vert _{-\alpha ,p}\leqslant C \Vert f\Vert _{-\alpha ,p_1} \Vert g\Vert _{\alpha ,p_2}. \end{aligned}$$
    (4.2)

The following proposition shows that the localized norm enjoys the almost same properties as the global norm \(\Vert \cdot \Vert _{\mathbb {H}^{\alpha ,p}_q}\).

Proposition 4.1

Let \(p,q\in (1,\infty )\) and \(\alpha \in {\mathbb {R}}\).

  1. (i)

    For \(r\not =r'>0\), there is a constant \(C=C(d,\alpha ,r,r')\geqslant 1\) such that for all \(f\in \widetilde{\mathbb {H}}^{\alpha ,p}_q\),

    $$\begin{aligned} C^{-1}\sup _{s,z}\Vert f\chi ^{s,z}_{r'}\Vert _{\mathbb {H}^{\alpha ,p}_q}\leqslant \sup _{s,z}\Vert f\chi ^{s,z}_r\Vert _{\mathbb {H}^{\alpha ,p}_q}\leqslant C \sup _{s,z}\Vert f\chi ^{s,z}_{r'}\Vert _{\mathbb {H}^{\alpha ,p}_q}. \end{aligned}$$
    (4.3)

    In other words, the definition of \(\widetilde{\mathbb {H}}^{\alpha ,p}_q\) does not depend on the choice of r.

  2. (ii)

    Let \((\rho _n)_{n\in {\mathbb {N}}}\) be a family of mollifiers in \({\mathbb {R}}^d\) and \(f_n(t,x):=f(t,\cdot )*\rho _n(x)\). For any \(f\in \widetilde{\mathbb {H}}^{\alpha ,p}_q\), it holds that \(f_n\in L^q_{loc}({\mathbb {R}}; C^\infty _b({\mathbb {R}}^d))\) and for some \(C=C(d,\alpha ,p,q)>0\),

    (4.4)

    and for any \(\varphi \in C^\infty _c({\mathbb {R}}^{d+1})\),

    $$\begin{aligned} \lim _{n\rightarrow \infty }\Vert (f_n-f)\varphi \Vert _{\mathbb {H}^{\alpha ,p}_q}=0. \end{aligned}$$
    (4.5)
  3. (iii)

    For any \(k\in {\mathbb {N}}\), there is a constant \(C=C(d,k,\alpha ,p,q)\geqslant 1\) such that for all \(f\in \widetilde{\mathbb {H}}^{\alpha +k,p}_q\),

  4. (iv)

    Let \(p\in (1,\infty )\) and \(\alpha \in (0,1]\), \(q\in [1,\infty ]\). For any \(p_1\in [p,\infty )\) and \(p_2\in [\frac{p_1}{p_1-1},\infty )\) with \(\frac{1}{p}\leqslant \frac{1}{p_1}+\frac{1}{p_2}<\frac{1}{p}+\frac{\alpha }{d}\), and \(\frac{1}{q_1}+\frac{1}{q_2}=\frac{1}{q}\), there is a constant \(C>0\) such that

  5. (v)

    \(\mathbb {L}^p_q+\mathbb {L}^\infty _\infty \subsetneq \widetilde{\mathbb {L}}^p_q\).

Proof

  1. (i)

    Let \(r>r'\). We first prove the right hand side inequality in (4.3). Fix \((s,z)\in {\mathbb {R}}^{d+1}\). Notice that the support of \(\chi ^{s,z}_r\) is contained in \(Q^{s,z}_{2r}\). Clearly, \(Q^{s,z}_{2r}\) can be covered by finitely many \(Q_{r'}^{s_i,z_i}, i=1,\cdots , N\), where \(N=N(d,r,r')\) does not depend on sz. Let \((\varphi _i)_{i=1}^{N}\) be the partition of unity associated with \(\{Q_{r'}^{s_i,z_i}, i=1,\cdots ,N\}\) so that

    $$\begin{aligned} (\varphi _1+\cdots +\varphi _N)|_{Q^{s,z}_{2r}}=1,\ \mathrm{supp}(\varphi _i)\subset Q_{r'}^{s_i,z_i}. \end{aligned}$$

    Thus, due to \(\chi ^{s_i,z_i}_{r'}|_{Q_{r'}^{s_i,z_i}}=1\), by (4.1) we have

    $$\begin{aligned} \Vert f\chi ^{s,z}_{r}\Vert _{\mathbb {H}^{\alpha ,p}_q}&\leqslant \sum _{i=1}^N\Vert f\chi ^{s,z}_{r}\varphi _i\Vert _{\mathbb {H}^{\alpha ,p}_q} =\sum _{i=1}^N\Vert f\chi ^{s_i,z_i}_{r'}\varphi _i\Vert _{\mathbb {H}^{\alpha ,p}_q}\\&\leqslant \sum _{i=1}^N\Vert f\chi ^{s_i,z_i}_{r'}\Vert _{\mathbb {H}^{\alpha ,p}_q}\Vert \varphi _i\Vert _{\mathbb {H}^{|\alpha |+1,\infty }_\infty } \leqslant C\sup _{i=1,\cdots , N}\Vert f\chi ^{s_i,z_i}_{r'}\Vert _{\mathbb {H}^{\alpha ,p}_q}, \end{aligned}$$

    where \(C=C(N,\alpha ,d,r,r')>0\), which yields the right hand side inequality in (4.3). On the other hand, since \(\chi ^{s,z}_{r'}=\chi ^{s,z}_{2r}\chi ^{s,z}_{r'}\), by what we have proved, we have

    $$\begin{aligned} \Vert f\chi ^{s,z}_{r'}\Vert _{\mathbb {H}^{\alpha ,p}_q}=\Vert f\chi ^{s,z}_{2r}\chi ^{s,z}_{r'}\Vert _{\mathbb {H}^{\alpha ,p}_q} \leqslant C \Vert f\chi ^{s,z}_{2r}\Vert _{\mathbb {H}^{\alpha ,p}_q}\Vert \chi ^{s,z}_{r'}\Vert _{\mathbb {H}^{|\alpha |+1,\infty }_\infty }\leqslant C\Vert f\chi ^{s,z}_{r}\Vert _{\mathbb {H}^{\alpha ,p}_q}, \end{aligned}$$

    where C does not depend on sz, which gives the left hand side inequality.

  2. (ii)

    By the definition of convolutions, it is easy to see that

    $$\begin{aligned} (\chi ^{s,z}_1f_n)(t,x)=\chi ^{s,z}_1(t,x)\cdot (f\chi ^{s,z}_2)(t,\cdot )*\rho _n(x). \end{aligned}$$

    Hence,

    $$\begin{aligned} \Vert \chi ^{s,z}_1f_n\Vert _{\mathbb {H}^{\alpha ,p}_q}\lesssim \Vert \chi ^{s,z}_1\Vert _{\mathbb {H}^{|\alpha |+1,\infty }_\infty }\Vert (f\chi ^{s,z}_2)_n\Vert _{\mathbb {H}^{\alpha ,p}_q} \lesssim \Vert \chi _1\Vert _{\mathbb {H}^{|\alpha |+1,\infty }_\infty }\Vert f\chi ^{s,z}_2\Vert _{\mathbb {H}^{\alpha ,p}_q}, \end{aligned}$$

    which gives (4.4). As for (4.5), it follows by a finitely covering technique.

  3. (iii)

    We only prove it for \(k=1\). By definition and \(\chi ^{s,z}_2\nabla \chi ^{s,z}_1=\nabla \chi ^{s,z}_1\) we have

    $$\begin{aligned} \Vert (\nabla f) \chi ^{s,z}_1\Vert _{\mathbb {H}^{\alpha ,p}_q}&\leqslant \Vert \nabla (f \chi ^{s,z}_1)\Vert _{\mathbb {H}^{\alpha ,p}_q}+\Vert f \nabla \chi ^{s,z}_1\Vert _{\mathbb {H}^{\alpha ,p}_q}\\&\lesssim \Vert f \chi ^{s,z}_1\Vert _{\mathbb {H}^{\alpha +1,p}_q}+\Vert f\chi ^{s,z}_2\Vert _{\mathbb {H}^{\alpha ,p}_q}\Vert \nabla \chi ^{s,z}_1\Vert _{\mathbb {H}^{|\alpha |+1,\infty }_\infty }, \end{aligned}$$

    which in turn gives the right hand side estimate by (i). The left hand side inequality is similar.

  4. (iv)

    By (4.2) and \(\chi ^{s,z}_2\chi ^{s,z}_1=\chi ^{s,z}_1\), we have

    $$\begin{aligned} \Vert (fg)\chi ^{s,z}_1\Vert _{\mathbb {H}^{-\alpha ,p}_q}=\Vert (f\chi ^{s,z}_2) (g\chi ^{s,z}_1)\Vert _{\mathbb {H}^{-\alpha ,p}_q} \leqslant \Vert f\chi ^{s,z}_2\Vert _{\mathbb {H}^{-\alpha ,p_1}_{q_1}} \Vert g\chi ^{s,z}_1\Vert _{\mathbb {H}^{\alpha ,p_2}_{q_2}}. \end{aligned}$$

    The desired estimate follows by (i).

  5. (v)

    Let \(\mathbb {Z}^d\) be the set of all lattice points. Define

    $$\begin{aligned} f(t,x):=\mathbf{1}_{[0,1]}(t)\sum _{z\in \mathbb {Z}^d}|x-z|^{-d/p}\mathbf{1}_{|x-z|\leqslant 1}. \end{aligned}$$

    It is easy to see that \(f\in \widetilde{\mathbb {L}}^p_q\), but \(f\notin \mathbb {L}^p_q+\mathbb {L}^\infty _\infty \). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, G. Stochastic Lagrangian Path for Leray’s Solutions of 3D Navier–Stokes Equations. Commun. Math. Phys. 381, 491–525 (2021). https://doi.org/10.1007/s00220-020-03888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03888-w

Navigation