Skip to main content
Log in

Representations of Cohomological Hall Algebras and Donaldson–Thomas Theory with Classical Structure Groups

Communications in Mathematical Physics Aims and scope Submit manuscript

Cite this article

Abstract

We introduce a new class of representations of the cohomological Hall algebras of Kontsevich and Soibelman, which we call cohomological Hall modules, or CoHM for short. These representations are constructed from self-dual representations of a quiver with contravariant involution \(\sigma \) and provide a mathematical model for the space of BPS states in orientifold string theory. We use the CoHM to define a generalization of the cohomological Donaldson–Thomas theory of quivers in which the quiver representations have orthogonal or symplectic structure groups. The associated invariants are called orientifold Donaldson–Thomas invariants. We prove the orientifold analogue of the integrality conjecture for \(\sigma \)-symmetric quivers. We also formulate precise conjectures regarding the geometric meaning of orientifold Donaldson–Thomas invariants and the freeness of the CoHM of a \(\sigma \)-symmetric quiver. We prove the freeness conjecture for disjoint union quivers, loop quivers and the affine Dynkin quiver of type \({\widetilde{A}}_1\). We also verify the geometric conjecture in a number of examples. Finally, we construct explicit Poincaré–Birkhoff–Witt-type bases of the CoHM of finite type quivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Because signs are included in the definition of \(x^{\prime }\), additional sign substitutions (as occur in Theorem 3.3) are not needed in these equations.

  2. Analogously to Conjecture 3.7, we should really restrict to a subalgebra of \({\mathcal {H}}_{Q,W,\mu =0}^{\theta \text {-} {\text {ss}}}\).

  3. Such a choice cannot always be made in type \(E_8\).

References

  1. Buch, A., Fulton, W.: Chern class formulas for quiver varieties. Invent. Math. 135(3), 665–687 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Chen, Z.: Geometric construction of generators of CoHA of doubled quiver. C. R. Math. Acad. Sci. Paris 352(12), 1039–1044 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chuang, W.-Y., Diaconescu, D.-E., Manschot, J., Moore, G., Soibelman, Y.: Geometric engineering of (framed) BPS states. Adv. Theor. Math. Phys. 18(5), 1063–1231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davison, B.: The critical CoHA of a quiver with potential. Q. J. Math. 68(2), 635–703 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davison, B.: Purity of critical cohomology and Kac’s conjecture. Math. Res. Lett. 25(2), 469–488 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davison, B., Meinhardt, S.: Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras (2016). arXiv:1601.02479

  7. Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)

    Article  MATH  Google Scholar 

  8. Derksen, H., Weyman, J.: Generalized quivers associated to reductive groups. Colloq. Math. 94(2), 151–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diaconescu, D.-E., Garcia-Raboso, A., Karp, R., Sinha, K.: D-brane superpotentials in Calabi–Yau orientifolds. Adv. Theor. Math. Phys. 11(3), 471–516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edidin, D.: Equivariant geometry and the cohomology of the moduli space of curves. In: Handbook of Moduli. Vol. I, volume 24 of Adv. Lect. Math. (ALM), pp. 259–292. Int. Press, Somerville, MA (2013)

  11. Efimov, A.: Cohomological Hall algebra of a symmetric quiver. Compos. Math. 148, 1133–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fehér, L., Rimányi, R.: Classes of degeneracy loci for quivers: the Thom polynomial point of view. Duke Math. J. 114(2), 193–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fehér, L., Rimányi, R.: Calculation of Thom polynomials and other cohomological obstructions for group actions. In: Real and Complex Singularities, volume 354 of Contemporary Mathematics, pp. 69–93. Amer. Math. Soc., Providence, RI (2004)

  14. Franzen, H.: On cohomology rings of non-commutative Hilbert schemes and CoHa-modules. Math. Res. Lett. 23(3), 804–840 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71–103 (1972). correction, ibid. 6 (1972), 309

    Article  MathSciNet  MATH  Google Scholar 

  16. Ginzburg, V.: Calabi–Yau algebras (2006). arXiv:math.AG/0612139

  17. Green, J.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120(2), 361–377 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gukov, S., Stošić, M.: Homological algebra of knots and BPS states. In: String-Math 2011, volume 85 of Proceedings of Symposia in Pure Mathematics, pp. 125–172. Amer. Math. Soc., Providence, RI (2011)

  19. Harris, J., Tu, L.: On symmetric and skew-symmetric determinantal varieties. Topology 23(1), 71–84 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harvey, J., Moore, G.: On the algebras of BPS states. Commun. Math. Phys. 197(3), 489–519 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math. (2) 177(3), 1147–1168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hori, K., Walcher, J.: D-brane categories for orientifolds—the Landau–Ginzburg case. J. High Energy Phys. 4, 030–36 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Józefiak, T., Lascoux, A., Pragacz, P.: Classes of determinantal varieties associated with symmetric and skew-symmetric matrices. Izv. Akad. Nauk SSSR Ser. Mat. 45(3), 662–673 (1981)

    MathSciNet  MATH  Google Scholar 

  24. Kashiwara, M., Schapira, P.: Sheaves on Manifolds volume 292 of Grundlehren der Mathematischen Wissenschaften. With a chapter in French by Christian Houzel. Springer, Berlin (1994)

    Google Scholar 

  25. King, A.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxf. Ser. (2) 45(180), 515–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008). arXiv:0811.2435

  27. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5(2), 231–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lovett, S.: Orbits of orthogonal and symplectic representations of symmetric quivers. Thesis (Ph.D.)–Northeastern University

  29. Lovett, S.: Orthogonal and symplectic analogues of determinantal ideals. J. Algebra 291(2), 416–456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Massey, D.: The Sebastiani–Thom isomorphism in the derived category. Compos. Math. 125(3), 353–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meinhardt, S., Reineke, M.: Donaldson–Thomas invariants versus intersection cohomology of quiver moduli. J. Reine Angew. Math. 754, 143–178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peters, C., Steenbrink, J.: Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 52. Springer, Berlin (2008)

    Google Scholar 

  34. Reineke, M.: Quivers, desingularizations and canonical bases. In: Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), volume 210 of Progress in Mathematics, pp. 325–344. Birkhäuser Boston, Boston, MA (2003)

  35. Reineke, M.: Degenerate cohomological Hall algebra and quantized Donaldson–Thomas invariants for \(m\)-loop quivers. Doc. Math. 17, 1–22 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Rimányi, R.: On the cohomological Hall algebra of Dynkin quivers (2013). arXiv:1303.3399

  37. Sinha, S., Vafa, C.: \({SO}\) and \({Sp}\) Chern–Simons at large \({N}\) (2000). arXiv:hep-th/0012136

  38. Soibelman, Y.: Remarks on cohomological Hall algebras and their representations. In: Arbeitstagung Bonn 2013: In: Memory of Friedrich Hirzebruch, volume 319 of Progress in Mathematics, pp. 355–385. Birkhäuser, Basel (2016)

  39. Szendrői, B.: Cohomological Donaldson–Thomas theory. In: String-Math 2014, volume 93 of Proceedings of Symposia in Pure Mathematics, pp. 363–396. Amer. Math. Soc., Providence, RI (2016)

  40. Walcher, J.: Evidence for tadpole cancellation in the topological string. Commun. Number Theory Phys. 3(1), 111–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiao, X.: The double of representations of Cohomological Hall Algebra for \(A_1\)-quiver (2014). arXiv:1407.7593

  42. Yang, Y., Zhao, G.: The cohomological hall algebra of a preprojective algebra. Proc. Lond. Math. Soc. (3) 116(5), 1029–1074 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Young, M.: Self-dual quiver moduli and orientifold Donaldson–Thomas invariants. Commun. Number Theory Phys. 9(3), 437–475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Young, M.: The Hall module of an exact category with duality. J. Algebra 446, 291–322 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Young, M.: Degenerate versions of Green’s theorem for Hall modules (2018). arXiv:1810.08238

Download references

Acknowledgements

The author would like to thank Ben Davison and Sven Meinhardt for discussions. The author is also grateful for the comments and suggestions of anonymous referees. Parts of this work were completed at National Taiwan University and the KIAS Winter School on Derived Categories and Wall-Crossing. The author would like to thank Wu-yen Chuang, Michel van Garrel and Bumsig Kim for the invitations. During the preparation of this work the author was supported by the Research Grants Council of the Hong Kong SAR, China (GRF HKU 703712) and by the Max Planck Institute for Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Young.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, M.B. Representations of Cohomological Hall Algebras and Donaldson–Thomas Theory with Classical Structure Groups. Commun. Math. Phys. 380, 273–322 (2020). https://doi.org/10.1007/s00220-020-03877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03877-z

Navigation