Skip to main content
Log in

A Short Proof of the Discontinuity of Phase Transition in the Planar Random-Cluster Model with \(q>4\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of this paper is to provide a short proof of the discontinuity of phase transition for the random-cluster model on the square lattice with parameter \(q>4\). This result was recently shown in Duminil-Copin et al. (arXiv:1611.09877, 2016) via the so-called Bethe ansatz for the six-vertex model. Our proof also exploits the connection to the six-vertex model, but does not rely on the Bethe ansatz. Our argument is soft (in particular, it does not rely on a computation of the correlation length) and only uses very basic properties of the random-cluster model [for example, we do not even need the Russo–Seymour–Welsh machinery developed recently in Duminil-Copin et al. (Commun Math Phys 349(1):47–107, 2017)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Elsevier, Amsterdam (2016)

    MATH  Google Scholar 

  2. Baxter, R.J., Kelland, S.B., Wu, F.Y.: Equivalence of the Potts model or Whitney polynomial with an ice-type model. J. Phys. A Math. Gen. 9(3), 397 (1976)

    Article  ADS  Google Scholar 

  3. Baxter, R.J.: Solvable eight-vertex model on an arbitrary planar lattice. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 289(1359), 315–346 (1978)

    ADS  MathSciNet  Google Scholar 

  4. Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Relat. Fields 153(3–4), 511–542 (2012)

    Article  Google Scholar 

  5. Duminil-Copin, H.: A new proof of first order phase transition for the planar random-cluster and Potts models with \(q\gg 1\), Stochastic analysis on large scale interacting systems, RIMS Kôkyûroku Bessatsu, B59, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 215–225 (2016)

  6. Duminil-Copin, H.: Lectures on the Ising and Potts models on the hypercubic lattice, arXiv:1707.00520 (2017)

  7. Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: Discontinuity of the phase transition for the planar random-cluster and Potts models with \(q>4\), arXiv preprint arXiv:1611.09877 (2016)

  8. Duminil-Copin, H., Li, J.-H., Manolescu, I.: Universality for the random-cluster model on isoradial graphs. Electron. J. Probab. 23(96), 1–70 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharp phase transition for the random-cluster and Potts models via decision trees. Ann. Math. (2) 189(1), 75–99 (2019)

    Article  MathSciNet  Google Scholar 

  10. Duminil-Copin, H., Sidoravicius, V., Tassion, V.: Continuity of the phase transition for planar random-cluster and Potts models with \(1 \le q \le 4\). Commun. Math. Phys. 349(1), 47–107 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fortuin, C.M.: On the random-cluster model, Ph.D. thesis, Universit of Leiden (1971)

  12. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  13. Glazman, A., Peled, R.: On the transition between the disordered and antiferroelectric phases of the 6-vertex model, arXiv preprint arXiv:1909.03436 (2019)

  14. Grimmett, G.: Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Berlin (1999)

    Google Scholar 

  15. Grimmett, G.R.: The Random-cluster Model, vol. 333. Springer, Berlin (2006)

    Book  Google Scholar 

  16. Kotecký, R., Shlosman, S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83(4), 493–515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  17. Laanait, L., Messager, A., Ruiz, J.: Phases coexistence and surface tensions for the Potts model. Commun. Math. Phys. 105(4), 527–545 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. Laanait, L., Messager, A., Miracle-Solé, S., Ruiz, J., Shlosman, S.: Interfaces in the Potts model. I. Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lieb, E.H.: Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18(17), 692 (1967)

    Article  ADS  Google Scholar 

  20. Lieb, E.H.: Exact Solution of the F Model of an Antiferroelectric, Condensed Matter Physics and Exactly Soluble Models, pp. 453–455. Springer, Berlin (2004)

    Book  Google Scholar 

  21. Lieb, E.H.: Residual Entropy of Square Ice, Condensed Matter Physics and Exactly Soluble Models, pp. 461–471. Springer, Berlin (2004)

    Book  Google Scholar 

  22. Temperley, H.N.V., Lieb, E.H.: Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. R. Soc. Lond. A Math. Phys. Sci. 322(1549), 251–280 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Yang, C.-N., Yang, C.-P.: One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150(1), 321 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexander Glazman, and Ron Peled who made available to us a draft of their paper [13]. We also thank them, Hugo Duminil-Copin and Marcin Lis for several useful comments on an earlier draft of this paper. We also thank the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gourab Ray.

Additional information

Communicated by H. Duminil-Copin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gourab Ray: Supported in part by NSERC 50311-57400 and University of Victoria start-up 10000-27458.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, G., Spinka, Y. A Short Proof of the Discontinuity of Phase Transition in the Planar Random-Cluster Model with \(q>4\). Commun. Math. Phys. 378, 1977–1988 (2020). https://doi.org/10.1007/s00220-020-03827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03827-9

Navigation