Skip to main content
Log in

The Classification of Rokhlin Flows on \(\mathrm {C}^{*}\)-algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study flows on \(\mathrm {C}^{*}\)-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory for Rokhlin flows on \(\mathrm {C}^{*}\)-algebras satisfying certain technical properties, which hold for many \(\mathrm {C}^{*}\)-algebras covered by the Elliott program. As a consequence, we obtain the following further classification theorems for Rokhlin flows. Firstly, we extend the statement of Kishimoto’s conjecture to the non-simple case: Up to cocycle conjugacy, a Rokhlin flow on a separable, nuclear, \({\mathcal {O}}_\infty \)-absorbing \(\mathrm {C}^{*}\)-algebra is uniquely determined by its induced action on the prime ideal space. Secondly, we give a complete classification of Rokhlin flows on simple classifiable KK-contractible \(\mathrm {C}^{*}\)-algebras: Two Rokhlin flows on such a \(\mathrm {C}^{*}\)-algebra are cocycle conjugate if and only if their induced actions on the cone of lower-semicontinuous traces are affinely conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For convenience we restrict to the unital case for the moment; see Definition 2.8 for the general formal definition.

  2. This means that there exists an affine homeomorphism \(\gamma \) on the topological cone T(A) of lower-semicontinuous extended traces respecting the scale \(\Sigma _A\) such that \(\gamma (\tau \circ \alpha _t)=\gamma (\tau )\circ \beta _t\) for all \(\tau \in T(A)\) and \(t\in {\mathbb {R}}\).

  3. Indeed \(A_{\infty ,\alpha }\) coincides with the \(\mathrm {C}^{*}\)-subalgebra of elements in \(A_\infty \) on which the induced algebraic \({\mathbb {R}}\)-action is continuous; see [7, Theorem 2].

  4. In fact, just insert \(a={\mathbf {1}}\) in the previous calculations, although some steps then become redundant.

  5. The superscripts attached to flows in this context are not to be confused with taking powers of the involved automorphisms, which we will never consider throughout this proof.

  6. This case will only use functional calculus and not the assumption that \(A\cong A\otimes {\mathcal {O}}_\infty \).

  7. Note here that the general version of [30, Lemma 14.8] also involves a constant \(\sigma >0\), a finite set \({\mathcal {P}}{\subset \!\!\!\subset }\underline{K}(A)\) and a subgroup \(G_u\subset K_0(A)\), all depending on the pair \((\varepsilon ,{\mathcal {F}})\). The constant \(\sigma \) is redundant due to our assumption that u is in the closed commutator subgroup, and both \({\mathcal {P}}\) and \(G_u\) are redundant because we assume A to be KK-trivial.

  8. The actual construction of the path begins on the line after (e14.131) on page 110 in [30].

  9. Note that any flow acts trivially on the K-theory of A, so the existence of a trace-scaling flow on A implies that the pairing between \(K_0(A)\) and T(A) must be trivial.

References

  1. Barlak, S., Szabó, G.: Sequentially split \(*\)-homomorphisms between \({\rm C}^{*}\)-algebras. Int. J. Math. 27 (2016). https://doi.org/10.1142/S0129167X16501056

  2. Barlak, S., Szabó, G., Voigt, C.: The Rokhlin property for actions of compact quantum groups. J. Funct. Anal. 272(6), 2308–2360 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Berg, I.D.: On approximation of normal operators by weighted shifts. Mich. Math. J. 21, 377–383 (1975)

    MathSciNet  MATH  Google Scholar 

  4. Bratteli, O., Kishimoto, A., Robinson, D.W.: Rohlin flows on the Cuntz algebra \({\cal{O}}_\infty \). J. Funct. Anal. 248, 472–511 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, I. Springer, Berlin (1979)

    MATH  Google Scholar 

  6. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, II. Springer, Berlin (1981)

    MATH  Google Scholar 

  7. Brown, L.: Continuity of actions of groups and semigroups on banach spaces. J. Lond. Math. Soc. 62(1), 107–116 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Brown, N., Perera, F., Toms, A.: The Cuntz semigroup, the Elliott conjecture, and dimension functions on \({\rm C}^{*}\)-algebras. J. Reine Angew. Math. 621, 191–211 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Castillejos, J., Evington, S.: Nuclear dimension of simple stably projectionless \({\rm C}^{*}\)-algebras. Anal. PDE (2019, to appear). arXiv:1901.11441

  10. Castillejos, J., Evington, S., Tikuisis, A., White, S., Winter, W.: Nuclear dimension of simple \({\rm C}^{*}\)-algebras (2019). arXiv:1901.05853

  11. Connes, A.: Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. 6, 133–252 (1973)

    MathSciNet  MATH  Google Scholar 

  12. Connes, A.: Classification of injective factors. Cases II\({}_1\), II\({}_\infty \), III\({}_\lambda \), \(\lambda \ne 1\). Ann. Math. 74, 73–115 (1976)

    Google Scholar 

  13. Connes, A.: An analogue of the Thom isomorphism for crossed products of a \({\rm C}^{*}\)-algebra by an action of \({\mathbb{R}}\). Adv. Math. 39(1), 31–55 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Connes, A.: Non-commutative Geometry. Academic Press, Boston (1994)

    MATH  Google Scholar 

  15. Cuntz, J.: Simple \({\rm C}^{*}\)-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Cuntz, J.: \(K\)-theory for certain \({\rm C}^{*}\)-algebras. Ann. Math. 113, 181–197 (1981)

    MathSciNet  MATH  Google Scholar 

  17. de la Harpe, P., Skandalis, G.: Déterminant associé à une trace sur une algèbre de Banach. Ann. Inst. Fourier 34(1), 169–202 (1984)

    MATH  Google Scholar 

  18. Elliott, G.A.: Derivations of matroid \({\rm C}^{*}\)-algebras. Invent. Math. 9, 253–269 (1970)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Elliott, G.A.: Some \({\rm C}^{*}\)-algebras with outer derivations, III. Ann. Math. 106, 121–143 (1977)

    MathSciNet  MATH  Google Scholar 

  20. Elliott, G.A.: On the classification of \({\rm C}^{*}\)-algebras of real rank zero. J. Reine Angew. Math. 443, 179–219 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Elliott, G.A., Evans, D.E.: The structure of irrational rotation \({\rm C}^{*}\)-algebras. Ann. Math. 138(3), 477–501 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Elliott, G.A., Gong, G., Lin, H., Niu, Z.: On the classification of simple \({\rm C}^{*}\)-algebras with finite decomposition rank, II (2015). arXiv:1507.03437

  23. Elliott, G.A., Gong, G., Lin, H., Niu, Z.: The classification of simple separable \(KK\)-contractible \({\rm C}^{*}\)-algebras with finite nuclear dimension (2017). arXiv:1712.09463v4

  24. Elliott, G.A., Gong, G., Lin, H., Niu, Z.: Simple stably projectionless \({\rm C}^{*}\)-algebras of generalized tracial rank one. J. Noncomm. Geom. (2017, to appear). arXiv:1711.01240v7

  25. Elliott, G.A., Robert, L., Santiago, L.: The cone of lower semicontinuous traces on a \({\rm C}^{*}\)-algebra. Am. J. Math. 133(4), 969–1005 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Enders, D.: Semiprojectivity for Kirchberg algebras (2015). arXiv:1507.06091

  27. Evans, D.E., Kishimoto, A.: Trace scaling automorphisms of certain stable AF algebras. Hokkaido Math. J. 26, 211–224 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Gabe, J.: Classification of \(\cal{O}_\infty \)-stable \({{\rm C}}^{*}\)-algebras (2019). arXiv:1910.06504

  29. Gabe, J.: A new proof of Kirchberg’s \(\cal{O}_2\)-stable classification. J. Reine Angew. Math. 761, 247–289 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Gong, G., Lin, H.: On classification of non-unital simple amenable \({{\rm C}}^{*}\)-algebras, II (2017). arXiv:1702.01073v4

  31. Gong, G., Lin, H., Niu, Z.: Classification of simple amenable \({\cal{Z}}\)-stable \({{\rm C}}^{*}\)-algebras (2015). arXiv:1501.00135

  32. Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5(3), 215–236 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Haagerup, U.: Connes bicentralizer problem and uniqueness of the injective factor of type III\({}_1\). Acta Math. 158, 95–148 (1987)

    MathSciNet  MATH  Google Scholar 

  34. Haagerup, U.: Quasitraces on exact \({\rm C}^{*}\)-algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can. 36, 67–92 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Haagerup, U., Rørdam, M.: Perturbation of the rotation \({\rm C}^{*}\)-algebras and of the Heisenberg commutation relation. Duke Math. J. 77, 627–656 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Herman, R., Ocneanu, A.: Stability for integer actions on UHF \({\rm C}^{*}\)-algebras. J. Funct. Anal. 59, 132–144 (1984)

    MathSciNet  MATH  Google Scholar 

  37. Hirshberg, I., Szabó, G., Winter, W., Wu, J.: Rokhlin dimension for flows. Commun. Math. Phys. 353(1), 253–316 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Izumi, M.: Finite group actions on \({\rm C}^{*}\)-algebras with the Rohlin property I. Duke Math. J. 122(2), 233–280 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Izumi, M.: Group Actions on Operator Algebras. Proc. Intern. Congr. Math., pp. 1528–1548 (2010). https://doi.org/10.1142/9789814324359_0109

  40. Izumi, M., Matui, H.: \({\mathbb{Z}}^2\)-actions on Kirchberg algebras. Adv. Math. 224, 355–400 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Kadison, R.V.: Derivations of operator algebras. Ann. Math. 83, 280–293 (1966)

    MathSciNet  MATH  Google Scholar 

  42. Kawamuro, K.: A Rohlin property for one-parameter automorphism groups of the hyperfinite II\({}_1\) factor. Publ. Res. Inst. Math. Sci. 36(5), 641–657 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Kirchberg, E.: Das nicht-kommutative Michael–Auswahlprinzip und die Klassifikation nicht-einfacher Algebren. \({{\rm C}}^{*}\)-algebras (Münster, 1999), pp. 92–141. Springer, Berlin (2000)

  44. Kirchberg, E.: The Classification of Purely Infinite \({{\rm C}}^{*}\)-Algebras Using Kasparov’s Theory (2003, preprint)

  45. Kirchberg, E.: Central sequences in \({\rm C}^{*}\)-algebras and strongly purely infinite algebras. Oper. Algebr. Abel Symp. 1, 175–231 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Kirchberg, E., Phillips, N.C.: Embedding of exact \({\rm C}^{*}\)-algebras in the Cuntz algebra \({\cal{O}}_2\). J. Reine Angew. Math. 525, 17–53 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Kirchberg, E., Rørdam, M.: Purely infinite \({\rm C}^{*}\)-algebras: ideal-preserving zero homotopies. GAFA 15(2), 377–415 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Kishimoto, A.: A Rohlin property for one-parameter automorphism groups. Commun. Math. Phys. 179(3), 599–622 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Kishimoto, A.: Unbounded derivations in AT algebras. J. Funct. Anal. 160, 270–311 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Kishimoto, A.: Rohlin flows on the Cuntz algebra \({\cal{O}}_2\). Int. J. Math. 13(10), 1065–1094 (2002)

    MATH  Google Scholar 

  51. Kishimoto, A.: Flows on \({{\rm C}}^{*}\)-algebras. RIMS Kokyuroku, no. 1332, pp. 1–25 (2003)

  52. Kishimoto, A.: Rohlin property for flows. In: Advances in Quantum Dynamics, Contemporary Mathematics, vol. 335, pp. 195–207. American Mathematical Society, Providence, RI (2003)

  53. Kishimoto, A.: The one-cocycle property for shifts. Ergod. Theory Dyn. Sys. 25, 823–859 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Kishimoto, A.: Multiplier cocycles of a flow on a \({\rm C}^{*}\)-algebra. J. Funct. Anal. 235, 271–296 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Kishimoto, A., Kumjian, A.: Simple stably projectionless \({\rm C}^{*}\)-algebras arising as crossed products. Can. J. Math. 48(5), 980–996 (1996)

    MathSciNet  MATH  Google Scholar 

  56. Kishimoto, A., Kumjian, A.: Crossed products of Cuntz algebras by quasi-free automorphisms. In: Operator Algebras and Their Applications, Fields Institute Communications, vol. 13, pp. 173–192. American Mathematical Society, Providence, RI (1997)

  57. Kishimoto, A., Kumjian, A.: The Ext class of an approximately inner automorphism II. J. Oper. Theory 46(1), 99–122 (2001)

    MathSciNet  MATH  Google Scholar 

  58. Krieger, W.: On ergodic flows and the isomorphism of factors. Math. Ann. 223(1), 19–70 (1976)

    MathSciNet  MATH  Google Scholar 

  59. Kubo, R.: Statistical–Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    ADS  MathSciNet  Google Scholar 

  60. Lin, H.: Simple corona \({\rm C}^{*}\)-algebras. Proc. Am. Math. Soc. 132(11), 3215–3224 (2004)

    MathSciNet  MATH  Google Scholar 

  61. Lin, H.: Asymptotically unitary equivalence and asymptotically inner automorphisms. Am. J. Math. 131(6), 1589–1677 (2009)

    MathSciNet  MATH  Google Scholar 

  62. Lin, H.: Approximate homotopy of homomorphisms from C(X) into a simple \({\rm C}^{*}\)-algebra. Mem. Am. Math. Soc. 205(963), 1–131 (2010)

    MathSciNet  Google Scholar 

  63. Martin, P.C., Schwinger, J.: Theory of many-particle systems. I. Phys. Rev. 115(6), 1342–1373 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Masuda, T., Tomatsu, R.: Rohlin flows on von Neumann algebras. Mem. Am. Math. Soc. 244, 1–128 (2016)

    MathSciNet  MATH  Google Scholar 

  65. Nakamura, H.: Aperiodic automorphisms of nuclear purely infinite simple \({\rm C}^{*}\)-algebras. Ergod. Theory Dyn. Sys. 20, 1749–1765 (2000)

    MathSciNet  MATH  Google Scholar 

  66. Nawata, N.: Trace scaling automorphisms of the stabilized Razak–Jacelon algebra. Proc. Lond. Math. Soc. 118(3), 545–576 (2019)

    MathSciNet  MATH  Google Scholar 

  67. Ng, P.W., Robert, L.: The kernel of the determinant map on pure \({\rm C}^{*}\)-algebras. Houst. J. Math. 43(1), 139–168 (2017)

    MathSciNet  MATH  Google Scholar 

  68. Phillips, N. C.: Approximate unitary equivalence of homomorphisms from odd Cuntz algebras. In: Operator Algebras and Their Applications, Fields Institute Communications, vol. 13, pp. 243–255. American Mathematical Society, Providence (1997)

  69. Phillips, N.C.: A classification theorem for nuclear purely infinite simple \({\rm C}^{*}\)-algebras. Doc. Math. 5, 49–114 (2000)

    MathSciNet  MATH  Google Scholar 

  70. Phillips, N.C.: Real rank and exponential length of tensor products with \(\cal{O}_\infty \). J. Oper. Theory 47, 117–130 (2002)

    MathSciNet  Google Scholar 

  71. Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. In: Proceedings of the International Congress of Mathematicians, pp. 445–479 (2006/2007)

  72. Ringrose, J.R.: Exponential length and exponential rank in \({\rm C}^{*}\)-algebras. Proc. R. Soc. Edinb. Sect. A 121(1–2), 55–71 (1992)

    MathSciNet  MATH  Google Scholar 

  73. Robert, L.: Classification of inductive limits of 1-dimensional NCCW complexes. Adv. Math. 231(5), 2802–2836 (2012)

    MathSciNet  MATH  Google Scholar 

  74. Robert, L.: Remarks on \({\cal{Z}}\)-stable projectionless \({\rm C}^{*}\)-algebras. Glasgow Math. J. 58(2), 273–277 (2015)

    MathSciNet  Google Scholar 

  75. Rørdam, M.: The stable and the real rank of \({\cal{Z}}\)-absorbing \({\rm C}^{*}\)-algebras. Int. J. Math. 15(10), 1065–1084 (2004)

    MathSciNet  MATH  Google Scholar 

  76. Sakai, S.: Derivations of \(\rm W^*\)-algebras. Ann. Math. 83, 273–279 (1966)

    MathSciNet  MATH  Google Scholar 

  77. Sakai, S.: Operator Algebras in Dynamical Systems. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  78. Shimada, K.: A classification of flows on AFD factors with faithful Connes–Takesaki modules. Trans. Am. Math. Soc. 368(6), 4497–4523 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Szabó, G.: Strongly self-absorbing \({\rm C}^{*}\)-dynamical systems, III. Adv. Math. 316(20), 356–380 (2017)

    MathSciNet  MATH  Google Scholar 

  80. Szabó, G.: Equivariant Kirchberg-Phillips-type absorption for amenable group actions. Commun. Math. Phys. 361(3), 1115–1154 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Szabó, G.: Strongly self-absorbing \({\rm C}^{*}\)-dynamical systems, II. J. Noncommut. Geom. 12(1), 369–406 (2018)

    MathSciNet  MATH  Google Scholar 

  82. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and its Applications. Lecture Notes Mathematics, vol. 128. Springer, Berlin (1970)

    MATH  Google Scholar 

  83. Tikuisis, A.: Nuclear dimension, \({\cal{Z}}\)-stability, and algebraic simplicity for stably projectionless \({\rm C}^{*}\)-algebras. Math. Ann. 358, 729–778 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Tikuisis, A., White, S., Winter, W.: Quasidiagonality of nuclear \({\rm C}^{*}\)-algebras. Ann. Math. 185(1), 229–284 (2017)

    MathSciNet  MATH  Google Scholar 

  85. Toms, A.S., Winter, W.: Strongly self-absorbing \({\rm C}^{*}\)-algebras. Trans. Am. Math. Soc. 359(8), 3999–4029 (2007)

    MathSciNet  MATH  Google Scholar 

  86. Toms, A.S., Winter, W.: Minimal dynamics and \(K\)-theoretic rigidity: Elliott’s conjecture. GAFA 23, 467–481 (2013)

    MathSciNet  MATH  Google Scholar 

  87. Winter, W.: Nuclear dimension and \(\cal{Z}\)-stability of pure \({\rm C}^{*}\)-algebras. Invent. Math. 187(2), 259–342 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I have been partially supported by the following sources, either while carrying out the research, or while writing or revising this manuscript: EPSRC grant EP/N00874X/1; the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92); the European Union’s Horizon 2020 research and innovation programme under the grants MSCA-IF-2016-746272-SCCD and MSCA-RISE-2015-691246-QUANTUM DYNAMICS; the start-up grant STG/18/019 of KU Leuven; the research project C14/19/088 funded by the research council of KU Leuven; the research project G085020N funded by the Research Foundation Flanders (FWO). I would like to thank the following colleagues for valuable discussions, remarks or other interactions that have benefited this paper in one way or another: Akitaka Kishimoto, Marius Dadarlat, Norio Nawata, James Gabe, Huaxin Lin, Masaki Izumi, Selçuk Barlak, Guihua Gong, George Elliott, David Kerr, Aaron Tikuisis, and Hannes Thiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Szabó.

Additional information

Communicated by Y. Kawahigashi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, G. The Classification of Rokhlin Flows on \(\mathrm {C}^{*}\)-algebras. Commun. Math. Phys. 382, 2015–2070 (2021). https://doi.org/10.1007/s00220-020-03812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03812-2

Navigation