Abstract
We study flows on \(\mathrm {C}^{*}\)-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory for Rokhlin flows on \(\mathrm {C}^{*}\)-algebras satisfying certain technical properties, which hold for many \(\mathrm {C}^{*}\)-algebras covered by the Elliott program. As a consequence, we obtain the following further classification theorems for Rokhlin flows. Firstly, we extend the statement of Kishimoto’s conjecture to the non-simple case: Up to cocycle conjugacy, a Rokhlin flow on a separable, nuclear, \({\mathcal {O}}_\infty \)-absorbing \(\mathrm {C}^{*}\)-algebra is uniquely determined by its induced action on the prime ideal space. Secondly, we give a complete classification of Rokhlin flows on simple classifiable KK-contractible \(\mathrm {C}^{*}\)-algebras: Two Rokhlin flows on such a \(\mathrm {C}^{*}\)-algebra are cocycle conjugate if and only if their induced actions on the cone of lower-semicontinuous traces are affinely conjugate.
Similar content being viewed by others
Notes
For convenience we restrict to the unital case for the moment; see Definition 2.8 for the general formal definition.
This means that there exists an affine homeomorphism \(\gamma \) on the topological cone T(A) of lower-semicontinuous extended traces respecting the scale \(\Sigma _A\) such that \(\gamma (\tau \circ \alpha _t)=\gamma (\tau )\circ \beta _t\) for all \(\tau \in T(A)\) and \(t\in {\mathbb {R}}\).
Indeed \(A_{\infty ,\alpha }\) coincides with the \(\mathrm {C}^{*}\)-subalgebra of elements in \(A_\infty \) on which the induced algebraic \({\mathbb {R}}\)-action is continuous; see [7, Theorem 2].
In fact, just insert \(a={\mathbf {1}}\) in the previous calculations, although some steps then become redundant.
The superscripts attached to flows in this context are not to be confused with taking powers of the involved automorphisms, which we will never consider throughout this proof.
This case will only use functional calculus and not the assumption that \(A\cong A\otimes {\mathcal {O}}_\infty \).
Note here that the general version of [30, Lemma 14.8] also involves a constant \(\sigma >0\), a finite set \({\mathcal {P}}{\subset \!\!\!\subset }\underline{K}(A)\) and a subgroup \(G_u\subset K_0(A)\), all depending on the pair \((\varepsilon ,{\mathcal {F}})\). The constant \(\sigma \) is redundant due to our assumption that u is in the closed commutator subgroup, and both \({\mathcal {P}}\) and \(G_u\) are redundant because we assume A to be KK-trivial.
The actual construction of the path begins on the line after (e14.131) on page 110 in [30].
Note that any flow acts trivially on the K-theory of A, so the existence of a trace-scaling flow on A implies that the pairing between \(K_0(A)\) and T(A) must be trivial.
References
Barlak, S., Szabó, G.: Sequentially split \(*\)-homomorphisms between \({\rm C}^{*}\)-algebras. Int. J. Math. 27 (2016). https://doi.org/10.1142/S0129167X16501056
Barlak, S., Szabó, G., Voigt, C.: The Rokhlin property for actions of compact quantum groups. J. Funct. Anal. 272(6), 2308–2360 (2017)
Berg, I.D.: On approximation of normal operators by weighted shifts. Mich. Math. J. 21, 377–383 (1975)
Bratteli, O., Kishimoto, A., Robinson, D.W.: Rohlin flows on the Cuntz algebra \({\cal{O}}_\infty \). J. Funct. Anal. 248, 472–511 (2007)
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, I. Springer, Berlin (1979)
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, II. Springer, Berlin (1981)
Brown, L.: Continuity of actions of groups and semigroups on banach spaces. J. Lond. Math. Soc. 62(1), 107–116 (2000)
Brown, N., Perera, F., Toms, A.: The Cuntz semigroup, the Elliott conjecture, and dimension functions on \({\rm C}^{*}\)-algebras. J. Reine Angew. Math. 621, 191–211 (2008)
Castillejos, J., Evington, S.: Nuclear dimension of simple stably projectionless \({\rm C}^{*}\)-algebras. Anal. PDE (2019, to appear). arXiv:1901.11441
Castillejos, J., Evington, S., Tikuisis, A., White, S., Winter, W.: Nuclear dimension of simple \({\rm C}^{*}\)-algebras (2019). arXiv:1901.05853
Connes, A.: Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. 6, 133–252 (1973)
Connes, A.: Classification of injective factors. Cases II\({}_1\), II\({}_\infty \), III\({}_\lambda \), \(\lambda \ne 1\). Ann. Math. 74, 73–115 (1976)
Connes, A.: An analogue of the Thom isomorphism for crossed products of a \({\rm C}^{*}\)-algebra by an action of \({\mathbb{R}}\). Adv. Math. 39(1), 31–55 (1981)
Connes, A.: Non-commutative Geometry. Academic Press, Boston (1994)
Cuntz, J.: Simple \({\rm C}^{*}\)-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)
Cuntz, J.: \(K\)-theory for certain \({\rm C}^{*}\)-algebras. Ann. Math. 113, 181–197 (1981)
de la Harpe, P., Skandalis, G.: Déterminant associé à une trace sur une algèbre de Banach. Ann. Inst. Fourier 34(1), 169–202 (1984)
Elliott, G.A.: Derivations of matroid \({\rm C}^{*}\)-algebras. Invent. Math. 9, 253–269 (1970)
Elliott, G.A.: Some \({\rm C}^{*}\)-algebras with outer derivations, III. Ann. Math. 106, 121–143 (1977)
Elliott, G.A.: On the classification of \({\rm C}^{*}\)-algebras of real rank zero. J. Reine Angew. Math. 443, 179–219 (1993)
Elliott, G.A., Evans, D.E.: The structure of irrational rotation \({\rm C}^{*}\)-algebras. Ann. Math. 138(3), 477–501 (1993)
Elliott, G.A., Gong, G., Lin, H., Niu, Z.: On the classification of simple \({\rm C}^{*}\)-algebras with finite decomposition rank, II (2015). arXiv:1507.03437
Elliott, G.A., Gong, G., Lin, H., Niu, Z.: The classification of simple separable \(KK\)-contractible \({\rm C}^{*}\)-algebras with finite nuclear dimension (2017). arXiv:1712.09463v4
Elliott, G.A., Gong, G., Lin, H., Niu, Z.: Simple stably projectionless \({\rm C}^{*}\)-algebras of generalized tracial rank one. J. Noncomm. Geom. (2017, to appear). arXiv:1711.01240v7
Elliott, G.A., Robert, L., Santiago, L.: The cone of lower semicontinuous traces on a \({\rm C}^{*}\)-algebra. Am. J. Math. 133(4), 969–1005 (2011)
Enders, D.: Semiprojectivity for Kirchberg algebras (2015). arXiv:1507.06091
Evans, D.E., Kishimoto, A.: Trace scaling automorphisms of certain stable AF algebras. Hokkaido Math. J. 26, 211–224 (1997)
Gabe, J.: Classification of \(\cal{O}_\infty \)-stable \({{\rm C}}^{*}\)-algebras (2019). arXiv:1910.06504
Gabe, J.: A new proof of Kirchberg’s \(\cal{O}_2\)-stable classification. J. Reine Angew. Math. 761, 247–289 (2020)
Gong, G., Lin, H.: On classification of non-unital simple amenable \({{\rm C}}^{*}\)-algebras, II (2017). arXiv:1702.01073v4
Gong, G., Lin, H., Niu, Z.: Classification of simple amenable \({\cal{Z}}\)-stable \({{\rm C}}^{*}\)-algebras (2015). arXiv:1501.00135
Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5(3), 215–236 (1967)
Haagerup, U.: Connes bicentralizer problem and uniqueness of the injective factor of type III\({}_1\). Acta Math. 158, 95–148 (1987)
Haagerup, U.: Quasitraces on exact \({\rm C}^{*}\)-algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can. 36, 67–92 (2014)
Haagerup, U., Rørdam, M.: Perturbation of the rotation \({\rm C}^{*}\)-algebras and of the Heisenberg commutation relation. Duke Math. J. 77, 627–656 (1995)
Herman, R., Ocneanu, A.: Stability for integer actions on UHF \({\rm C}^{*}\)-algebras. J. Funct. Anal. 59, 132–144 (1984)
Hirshberg, I., Szabó, G., Winter, W., Wu, J.: Rokhlin dimension for flows. Commun. Math. Phys. 353(1), 253–316 (2017)
Izumi, M.: Finite group actions on \({\rm C}^{*}\)-algebras with the Rohlin property I. Duke Math. J. 122(2), 233–280 (2004)
Izumi, M.: Group Actions on Operator Algebras. Proc. Intern. Congr. Math., pp. 1528–1548 (2010). https://doi.org/10.1142/9789814324359_0109
Izumi, M., Matui, H.: \({\mathbb{Z}}^2\)-actions on Kirchberg algebras. Adv. Math. 224, 355–400 (2010)
Kadison, R.V.: Derivations of operator algebras. Ann. Math. 83, 280–293 (1966)
Kawamuro, K.: A Rohlin property for one-parameter automorphism groups of the hyperfinite II\({}_1\) factor. Publ. Res. Inst. Math. Sci. 36(5), 641–657 (2000)
Kirchberg, E.: Das nicht-kommutative Michael–Auswahlprinzip und die Klassifikation nicht-einfacher Algebren. \({{\rm C}}^{*}\)-algebras (Münster, 1999), pp. 92–141. Springer, Berlin (2000)
Kirchberg, E.: The Classification of Purely Infinite \({{\rm C}}^{*}\)-Algebras Using Kasparov’s Theory (2003, preprint)
Kirchberg, E.: Central sequences in \({\rm C}^{*}\)-algebras and strongly purely infinite algebras. Oper. Algebr. Abel Symp. 1, 175–231 (2004)
Kirchberg, E., Phillips, N.C.: Embedding of exact \({\rm C}^{*}\)-algebras in the Cuntz algebra \({\cal{O}}_2\). J. Reine Angew. Math. 525, 17–53 (2000)
Kirchberg, E., Rørdam, M.: Purely infinite \({\rm C}^{*}\)-algebras: ideal-preserving zero homotopies. GAFA 15(2), 377–415 (2005)
Kishimoto, A.: A Rohlin property for one-parameter automorphism groups. Commun. Math. Phys. 179(3), 599–622 (1996)
Kishimoto, A.: Unbounded derivations in AT algebras. J. Funct. Anal. 160, 270–311 (1998)
Kishimoto, A.: Rohlin flows on the Cuntz algebra \({\cal{O}}_2\). Int. J. Math. 13(10), 1065–1094 (2002)
Kishimoto, A.: Flows on \({{\rm C}}^{*}\)-algebras. RIMS Kokyuroku, no. 1332, pp. 1–25 (2003)
Kishimoto, A.: Rohlin property for flows. In: Advances in Quantum Dynamics, Contemporary Mathematics, vol. 335, pp. 195–207. American Mathematical Society, Providence, RI (2003)
Kishimoto, A.: The one-cocycle property for shifts. Ergod. Theory Dyn. Sys. 25, 823–859 (2005)
Kishimoto, A.: Multiplier cocycles of a flow on a \({\rm C}^{*}\)-algebra. J. Funct. Anal. 235, 271–296 (2006)
Kishimoto, A., Kumjian, A.: Simple stably projectionless \({\rm C}^{*}\)-algebras arising as crossed products. Can. J. Math. 48(5), 980–996 (1996)
Kishimoto, A., Kumjian, A.: Crossed products of Cuntz algebras by quasi-free automorphisms. In: Operator Algebras and Their Applications, Fields Institute Communications, vol. 13, pp. 173–192. American Mathematical Society, Providence, RI (1997)
Kishimoto, A., Kumjian, A.: The Ext class of an approximately inner automorphism II. J. Oper. Theory 46(1), 99–122 (2001)
Krieger, W.: On ergodic flows and the isomorphism of factors. Math. Ann. 223(1), 19–70 (1976)
Kubo, R.: Statistical–Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)
Lin, H.: Simple corona \({\rm C}^{*}\)-algebras. Proc. Am. Math. Soc. 132(11), 3215–3224 (2004)
Lin, H.: Asymptotically unitary equivalence and asymptotically inner automorphisms. Am. J. Math. 131(6), 1589–1677 (2009)
Lin, H.: Approximate homotopy of homomorphisms from C(X) into a simple \({\rm C}^{*}\)-algebra. Mem. Am. Math. Soc. 205(963), 1–131 (2010)
Martin, P.C., Schwinger, J.: Theory of many-particle systems. I. Phys. Rev. 115(6), 1342–1373 (1959)
Masuda, T., Tomatsu, R.: Rohlin flows on von Neumann algebras. Mem. Am. Math. Soc. 244, 1–128 (2016)
Nakamura, H.: Aperiodic automorphisms of nuclear purely infinite simple \({\rm C}^{*}\)-algebras. Ergod. Theory Dyn. Sys. 20, 1749–1765 (2000)
Nawata, N.: Trace scaling automorphisms of the stabilized Razak–Jacelon algebra. Proc. Lond. Math. Soc. 118(3), 545–576 (2019)
Ng, P.W., Robert, L.: The kernel of the determinant map on pure \({\rm C}^{*}\)-algebras. Houst. J. Math. 43(1), 139–168 (2017)
Phillips, N. C.: Approximate unitary equivalence of homomorphisms from odd Cuntz algebras. In: Operator Algebras and Their Applications, Fields Institute Communications, vol. 13, pp. 243–255. American Mathematical Society, Providence (1997)
Phillips, N.C.: A classification theorem for nuclear purely infinite simple \({\rm C}^{*}\)-algebras. Doc. Math. 5, 49–114 (2000)
Phillips, N.C.: Real rank and exponential length of tensor products with \(\cal{O}_\infty \). J. Oper. Theory 47, 117–130 (2002)
Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. In: Proceedings of the International Congress of Mathematicians, pp. 445–479 (2006/2007)
Ringrose, J.R.: Exponential length and exponential rank in \({\rm C}^{*}\)-algebras. Proc. R. Soc. Edinb. Sect. A 121(1–2), 55–71 (1992)
Robert, L.: Classification of inductive limits of 1-dimensional NCCW complexes. Adv. Math. 231(5), 2802–2836 (2012)
Robert, L.: Remarks on \({\cal{Z}}\)-stable projectionless \({\rm C}^{*}\)-algebras. Glasgow Math. J. 58(2), 273–277 (2015)
Rørdam, M.: The stable and the real rank of \({\cal{Z}}\)-absorbing \({\rm C}^{*}\)-algebras. Int. J. Math. 15(10), 1065–1084 (2004)
Sakai, S.: Derivations of \(\rm W^*\)-algebras. Ann. Math. 83, 273–279 (1966)
Sakai, S.: Operator Algebras in Dynamical Systems. Cambridge University Press, Cambridge (1991)
Shimada, K.: A classification of flows on AFD factors with faithful Connes–Takesaki modules. Trans. Am. Math. Soc. 368(6), 4497–4523 (2016)
Szabó, G.: Strongly self-absorbing \({\rm C}^{*}\)-dynamical systems, III. Adv. Math. 316(20), 356–380 (2017)
Szabó, G.: Equivariant Kirchberg-Phillips-type absorption for amenable group actions. Commun. Math. Phys. 361(3), 1115–1154 (2018)
Szabó, G.: Strongly self-absorbing \({\rm C}^{*}\)-dynamical systems, II. J. Noncommut. Geom. 12(1), 369–406 (2018)
Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and its Applications. Lecture Notes Mathematics, vol. 128. Springer, Berlin (1970)
Tikuisis, A.: Nuclear dimension, \({\cal{Z}}\)-stability, and algebraic simplicity for stably projectionless \({\rm C}^{*}\)-algebras. Math. Ann. 358, 729–778 (2014)
Tikuisis, A., White, S., Winter, W.: Quasidiagonality of nuclear \({\rm C}^{*}\)-algebras. Ann. Math. 185(1), 229–284 (2017)
Toms, A.S., Winter, W.: Strongly self-absorbing \({\rm C}^{*}\)-algebras. Trans. Am. Math. Soc. 359(8), 3999–4029 (2007)
Toms, A.S., Winter, W.: Minimal dynamics and \(K\)-theoretic rigidity: Elliott’s conjecture. GAFA 23, 467–481 (2013)
Winter, W.: Nuclear dimension and \(\cal{Z}\)-stability of pure \({\rm C}^{*}\)-algebras. Invent. Math. 187(2), 259–342 (2012)
Acknowledgements
I have been partially supported by the following sources, either while carrying out the research, or while writing or revising this manuscript: EPSRC grant EP/N00874X/1; the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92); the European Union’s Horizon 2020 research and innovation programme under the grants MSCA-IF-2016-746272-SCCD and MSCA-RISE-2015-691246-QUANTUM DYNAMICS; the start-up grant STG/18/019 of KU Leuven; the research project C14/19/088 funded by the research council of KU Leuven; the research project G085020N funded by the Research Foundation Flanders (FWO). I would like to thank the following colleagues for valuable discussions, remarks or other interactions that have benefited this paper in one way or another: Akitaka Kishimoto, Marius Dadarlat, Norio Nawata, James Gabe, Huaxin Lin, Masaki Izumi, Selçuk Barlak, Guihua Gong, George Elliott, David Kerr, Aaron Tikuisis, and Hannes Thiel.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Szabó, G. The Classification of Rokhlin Flows on \(\mathrm {C}^{*}\)-algebras. Commun. Math. Phys. 382, 2015–2070 (2021). https://doi.org/10.1007/s00220-020-03812-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-020-03812-2