Skip to main content
Log in

Large n Limit for the Product of Two Coupled Random Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a pair of coupled rectangular random matrices we consider the squared singular values of their product, which form a determinantal point process. We show that the limiting mean distribution of these squared singular values is described by the second component of the solution to a vector equilibrium problem. This vector equilibrium problem is defined for three measures with an upper constraint on the first measure and an external field on the second measure. We carry out the steepest descent analysis for a 4 \(\times \) 4 matrix-valued Riemann–Hilbert problem, which characterizes the correlation kernel and is related to mixed type multiple orthogonal polynomials associated with the modified Bessel functions. A careful study of the vector equilibrium problem, combined with this asymptotic analysis, ultimately leads to the aforementioned convergence result for the limiting mean distribution, an explicit form of the associated spectral curve, as well as local Sine, Meijer-G and Airy universality results for the squared singular values considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In fact, in (3.44) the \(+\)-boundary value can be omitted. Our proof that the left-hand side of (3.44) does not vanish relies on the equalities (3.39), (3.41) and (3.43) in an implicit manner, but obviously not on their corresponding inequalities.

  2. For convenience, the correspondence between our notations and those used in [11] is listed below:

    $$\begin{aligned} a_1=\kappa ,\quad a_2=\nu -\kappa , \quad A_1=-\nu -\kappa , \quad A_2=2\kappa -\nu ,\quad A_3=2\nu -\kappa , \end{aligned}$$

    and

    $$\begin{aligned} (a_{j,k})_{j,k=1,2}= \begin{pmatrix} \kappa &{} \nu \\ 0 &{} \nu -\kappa \end{pmatrix}, \qquad \Omega _{\pm } = {{\,\mathrm{diag}\,}}(\omega ^\pm ,\omega ^\mp ,1). \end{aligned}$$

    Moreover, in [11], \(\omega =\omega _{BB}=e^{\pi i/3}\), so \(\omega _{BB}^2=\omega \) and the contours are

    $$\begin{aligned} {\mathfrak {r}}_0=\Gamma _0, \quad {\mathfrak {r}}_1=\Gamma _1, \quad {\mathfrak {r}}_2=\Gamma _5, \quad {\mathfrak {r}}_3=\Gamma _2, \quad {\mathfrak {r}}_4=\Gamma _4, \quad {\mathfrak {r}}_5=\Gamma _3, \end{aligned}$$

    with all the \({\mathfrak {r}}_k\)’s oriented from the origin towards \(\infty \).

  3. The correspondence between our parameters \(\alpha =\alpha _{SZ}\), \(\beta =\beta _{SZ}\) and \(\tau =\tau _{SZ}\) and Liu’s parameters \(\delta _L\), \(\alpha _L\) and \(\mu _L\) is \(\beta _{SZ}=\alpha _L\), \(\alpha _{SZ}=\delta _L\) and \(\tau _{SZ}=\beta _L\).

References

  1. Akemann, G., Damgaard, P.H., Osborn, J.C., Splittorff, K.: A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential. Nucl. Phys. B 766, 34–76 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of independent random matrices. Acta Phys. Polon. B 46, 1747–1784 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Akemann, G., Ipsen, J.R., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)

    ADS  Google Scholar 

  4. Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A: Math. Theor. 46, 275205 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Akemann, G., Strahov, E.: Product matrix processes for coupled multi-matrix models and their hard edge scaling limits. Ann. Henri Poincaré 19, 2599–2649 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Akemann, G., Strahov, E.: Hard edge limit of the product of two strongly coupled random matrices. Nonlinearity 29, 3743–3776 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Akemann, G., Strahov, E.: Dropping the independence: singular values for products of two coupled random matrices. Commun. Math. Phys. 345, 101–140 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Aptekarev, A.I., Bleher, P.M., Kuijlaars, A.B.J.: Large \(n\) limit of Gaussian random matrices with external source. II. Commun. Math. Phys. 259, 367–389 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Beckermann, B., Kalyagin, V., Matos, A., Wielonsky, F.: Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses. Constr. Approx. 37, 101–134 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Balogh, F., Bertola, M.: Regularity of a vector potential problem and its spectral curve. J. Approx. Theory 161, 353–370 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Bertola, M., Bothner, T.: Universality conjecture and results for a model of several coupled positive-definite matrices. Commun. Math. Phys. 337, 1077–1141 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bertola, M., Eynard, B., Harnad, J.: Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem. Commun. Math. Phys. 243, 193–240 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bertola, M., Eynard, B., Harnad, J.: Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Commun. Math. Phys. 263, 401–437 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy-Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. 326, 111–144 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Bleher, P.M., Kuijlaars, A.B.J.: Large \(n\) limit of Gaussian random matrices with external source, part III: double scaling limit. Commun. Math. Phys. 270, 481–517 (2007)

    ADS  MATH  Google Scholar 

  16. Bleher, P.M., Kuijlaars, A.B.J.: Large \(n\) limit of Gaussian random matrices with external source. I. Commun. Math. Phys. 252, 43–76 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Bougerol, P., Lacroix, J.: Products of random matrices with applications to Schrödinger operators. In: Huber, P., Rosenblatt, M. (eds.) Progress in Probability and Statistics, vol. 8. Birkhäuser, Boston (1985)

    Google Scholar 

  19. Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices - the extended version. Acta Phys. Polon. B 42, 939–985 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Crisanti, A., Paladin, G., Vulpiani, A.: Products of Random Matrices in Statistical Physics, Springer Series in Solid-State Sciences 104. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  22. Daems, E., Kuijlaars, A.B.J.: Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 146, 91–114 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes 3. New York University, New York (1999)

    Google Scholar 

  24. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335–1425 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Delvaux, S., Kuijlaars, A.B.J., Román, P., Zhang, L.: Non-intersecting squared Bessel paths with one positive starting and ending point. J. Anal. Math. 118, 105–159 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Dragnev, P.D.: Constrained Energy Problems for Logarithmic Potentials. University of South Florida, Tampa (1997). Ph.D. Thesis

    Google Scholar 

  27. Dragnev, P.D., Kuijlaars, A.B.J.: Equilibrium problems associated with fast decreasing polynomials. Proc. Am. Math. Soc. 127, 1065–1074 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Dragnev, P.D., Saff, E.B.: Constrained energy problems with applications to orthogonal polynomials of a discrete variable. J. Anal. Math. 72, 223–259 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Duits, M., Kuijlaars, A.B.J.: Universality in the two matrix model: a Riemann–Hilbert steepest descent analysis. Commun. Pure Appl. Math. 62, 1076–1153 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Duits, M., Kuijlaars, A.B.J., Mo, M.Y.: The Hermitian two matrix model with an even quartic potential. Mem. Am. Math. Soc. 217(1022), v+105 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in \(2\)D quantum gravity. Commun. Math. Phys. 147, 395–430 (1992)

    ADS  MATH  Google Scholar 

  32. Forrester, P.J.: Eigenvalue statistics for product complex Wishart matrices. J. Phys. A: Math. Theor. 47, 345202 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Forrester, P.J., Kieburg, M.: Relating the Bures measure to the Cauchy two-matrix model. Commun. Math. Phys. 342, 151–187 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    MathSciNet  MATH  Google Scholar 

  35. Hardy, A., Kuijlaars, A.B.J.: Weakly admissible vector equilibrium problems. J. Approx. Theory 164, 854–868 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Kuijlaars, A.B.J.: Universality, in the Oxford Handbook of Random Matrix Theory, pp. 103–134. Oxford University Press, Oxford (2011)

    Google Scholar 

  37. Kuijlaars, A.B.J., Martínez-Finkelstein, A., Wielonsky, F.: Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. Commun. Math. Phys. 286, 217–275 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Kuijlaars, A.B.J., Molag, L.: The local universality of Muttalib-Borodin biorthogonal ensembles with parameter \(\theta =1/2\). Nonlinearity 32, 3023–3081 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Kuijlaars, A.B.J., Stivigny, D.: Singular values of products of random matrices and polynomial ensembles. Random Matrices Theory Appl. 3, 1450011 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Kuijlaars, A.B.J., Tovbis, A.: The supercritical regime in the normal matrix model with cubic potential. Adv. Math. 283, 530–587 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Kuijlaars, A.B.J., Zhang, L.: Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759–781 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Landkof, N.S.: Foundations of Modern Potential Thoery. Grundlehren der mathematischen Wissenschaften, vol. 180. Springer, Berlin (1997)

    Google Scholar 

  43. Liu, D.-Z.: Singular values for products of two coupled random matrices: hard edge phase transition. Constr. Approx. 47, 487–528 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Liu, D.-Z., Wang, D., Zhang, L.: Bulk and soft-edge universality for singular values of products of Ginibre random matrices. Ann. Inst. Henri Poincaré - Prob. Stat. 52, 1734–1762 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Martínez-Finkelstein, A., Silva, G.L.F.: Spectral curves, variational problems, and the Hermitian matrix model with external source, ArXiv:1907.08108 (2019)

  46. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  47. Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  48. Muskhelishvili, N.I.: Singular integral equations: boundary problems of functions theory and their applications to mathematical physics. In: Radok, J.R.M. (ed.) Revised Translation from the Russian. Wolters-Noordhoff Publishing, Groningen (1972)

    Google Scholar 

  49. Neuschel, T.: Plancherel-Rotach formulae for average characteristic polynomials of products of Ginibre random matrices and the Fuss-Catalan distribution. Random Matrices Theory Appl. 3, 1450003 18 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Olver, F.W.J., Lozier, D.W. , Boisvert, R.F., Clark, C.W. (eds) NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge 2010. Print companion to [DLMF]

  51. Osborn, J.C.: Universal results from an alternate random matrix model for QCD with a baryon chemical potential. Phys. Rev. Lett. 93, 222001–222004 (2004)

    ADS  Google Scholar 

  52. Pommerenke, C.: Univalent Functions—With a Chapter on Quadratic Differentials by Gerd Jensen. Vandenhoeck & Ruprecht, Göttingen (1975)

    MATH  Google Scholar 

  53. Ransford, T.: Potential Theory in the Complex Plane. London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  54. Saff, E.B., Totik, V.: Logarithmic Potentials with External Field. Grundlehren der mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997)

    Google Scholar 

  55. Sendra, J.R., Winkler, F., Pérez-Díaz, S.: Rational Algebraic Curves: A Computer Algebra Approach. Algorithms and Computation in Mathematics, vol. 22. Springer, Berlin (2008)

    MATH  Google Scholar 

  56. Tsuji, M.: Potential Theory in Modern Function Theory, 2nd edn. Chelsea, New York (1975)

    MATH  Google Scholar 

  57. Van Assche, W., Geronimo, J.S., Kuijlaars, A.B.J.: Riemann–Hilbert problems for multiple orthogonal polynomials. In: Bustoz, J., et al. (eds.) Special Functions 2000: Current Perspective and Future Directions. Kluwer, Dordrecht (2001)

    Google Scholar 

  58. Zhang, L.: Mixed type multiple orthogonal polynomials associated with the modified Bessel functions and products of two coupled random matrices. J. Approx. Theory 213, 92–119 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Guilherme Silva thanks the hospitality of the School of Mathematical Sciences at Fudan university where most of this research was carried out, and also thanks Leslie Molag for discussions related to this work. Part of this work was also carried out while he was a Postdoctoral Assistant Professor in the Department of Mathematics at the University of Michigan. He also acknowledges his current support by São Paulo Research Foundation (FAPESP) under Grant #2019/16062-1 and Grant # 2020/02506-2. Lun Zhang was partially supported by National Natural Science Foundation of China under Grant Numbers 11822104 and 11501120, by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and by Grant EZH1411513 from Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun Zhang.

Additional information

Communicated by P. Deift.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Heuristics on the Vector Equilibrium Problem

Appendix A: Heuristics on the Vector Equilibrium Problem

In this section, we give some heuristic arguments on how to formulate the vector equilibrium problem introduced in Sect. 2.2, which is closely related to the asymptotic analysis of the RH problem for Y.

Recall that the goal of the second transformation \(X \rightarrow T\) is to ‘normalize’ the large z asymptotics of X and to prepare for the opening of lenses. We assume that, at this moment, it takes the following form:

$$\begin{aligned} T(z)={\widehat{C}} X(z) {{\,\mathrm{diag}\,}}(e^{n\lambda _1(z)},e^{n\lambda _2(z)},e^{n\lambda _3(z)},e^{n\lambda _4(z)}), \end{aligned}$$
(A.1)

where \({\widehat{C}} \) is a constant matrix and the \(\lambda \)-functions are of the form

$$\begin{aligned} \begin{aligned} \lambda _1(z)&=\int ^z C^{\mu _1}(s)\,\mathrm {d}s+V_1(z), \\ \lambda _2(z)&=\int ^z C^{\mu _2}(s)\,\mathrm {d}s-\int ^z C^{\mu _1}(s)\,\mathrm {d}s+V_2(z), \\ \lambda _3(z)&=\int ^z C^{\mu _3}(s)\,\mathrm {d}s-\int ^z C^{\mu _2}(s)\,\mathrm {d}s+V_3(z), \\ \lambda _4(z)&=-\int ^z C^{\mu _3}(s)\,\mathrm {d}s+V_4(z). \end{aligned} \end{aligned}$$
(A.2)

In the above formulas, \(C^{\mu }(z)\) is the Cauchy transform of a measure \(\mu \) given in (2.14), \(\mu _1\), \(\mu _2\) and \(\mu _3\) are three measures satisfying

$$\begin{aligned}&{{\,\mathrm{supp}\,}}\mu _1\subset {\mathbb {R}}_-, \quad {{\,\mathrm{supp}\,}}\mu _2\subset {\mathbb {R}}_+, \quad {{\,\mathrm{supp}\,}}\mu _3\subset {\mathbb {R}}_-, \end{aligned}$$
(A.3)
$$\begin{aligned}&2|\mu _1|=|\mu _2|=2|\mu _3|=1, \end{aligned}$$
(A.4)

and \(V_1,V_2,V_3,V_4\) are four functions to be determined.

As \(z\rightarrow \infty \), it is readily seen from (A.1) and (5.13) that,

$$\begin{aligned} T(z)= & {} (I_4+\mathcal {O}(z^{-1}))B(z) \\&\times {{\,\mathrm{diag}\,}}\left( z^{\frac{n}{2}}e^{n(\lambda _1-2\alpha z^{\frac{1}{2}})},z^{\frac{n}{2}}e^{n(\lambda _2+2\alpha z^{\frac{1}{2}})},z^{-\frac{n}{2}}e^{n(\lambda _3+2\beta z^{\frac{1}{2}})},z^{-\frac{n}{2}}e^{n(\lambda _4-2\beta z^{\frac{1}{2}})}\right) . \end{aligned}$$

The normalization requirement then invokes us to expect that, as \(z\rightarrow \infty \),

$$\begin{aligned} \begin{aligned} \lambda _1(z)-2\alpha z^{\frac{1}{2}}+\frac{1}{2}\log z&= o (1), \qquad \lambda _2(z)+2\alpha z^{\frac{1}{2}}+\frac{1}{2}\log z = o (1), \\ \lambda _3(z)+2\beta z^{\frac{1}{2}}-\frac{1}{2}\log z&= o (1), \qquad \lambda _4(z)-2\beta z^{\frac{1}{2}}-\frac{1}{2}\log z = o (1). \end{aligned} \end{aligned}$$
(A.5)

On the other hand, in view of (3.1), it follows that, as \(z\rightarrow \infty \),

$$\begin{aligned} \begin{aligned} \lambda _1(z)&=V_1(z)-\frac{1}{2}\log z + \mathcal {O}(z^{-1}), \qquad \lambda _2(z) =V_2(z)-\frac{1}{2}\log z + \mathcal {O}(z^{-1}), \\ \lambda _3(z)&=V_3(z)+\frac{1}{2}\log z + \mathcal {O}(z^{-1}), \qquad \lambda _4(z) =V_4(z)+\frac{1}{2}\log z + \mathcal {O}(z^{-1}). \end{aligned} \end{aligned}$$

Comparing these asymptotics with (A.5), it is easily seen that we should have

$$\begin{aligned} \begin{aligned} V_1(z)&=2\alpha z^{\frac{1}{2}}, \qquad&V_2(z)=-2\alpha z^{\frac{1}{2}}, \\ V_3(z)&=-2\beta z^{\frac{1}{2}}, \qquad&V_4(z)=2\beta z^{\frac{1}{2}}. \end{aligned} \end{aligned}$$
(A.6)

We next come to the jump condition satisfied by T. Taking into account (A.1), (A.3) and (5.12), it is readily seen that

$$\begin{aligned} T_+(x)=T_-(x)J_{T}(x), \qquad x\in {\mathbb {R}}, \end{aligned}$$

where

$$\begin{aligned} J_T(x)= & {} {{\,\mathrm{diag}\,}}\left( 1,e^{n(\lambda _{2,+}(x)-\lambda _{2,-}(x))},e^{n(\lambda _{3,+}(x)-\lambda _{3,-}(x))},1\right) \\&+ x^{\frac{\nu }{2}}e^{n(\lambda _{3,+}(x)-\lambda _{2,-}(x))}E_{23}, \qquad x\in {\mathbb {R}}_+, \end{aligned}$$

and

$$\begin{aligned} J_T(x)= & {} \Lambda {{\,\mathrm{diag}\,}}\left( e^{n(\lambda _{1,+}(x)-\lambda _{1,-}(x))},e^{n(\lambda _{2,+}(x)-\lambda _{2,-}(x))},e^{n(\lambda _{3,+}(x)-\lambda _{3,-}(x))}, e^{n(\lambda _{4,+}(x)-\lambda _{4,-}(x))}\right) \\&\quad - e^{n(\lambda _{1,+}(x)-\lambda _{2,-}(x))}E_{21}- e^{n(\lambda _{4,+}(x)-\lambda _{3,-}(x))}E_{34}, \qquad x\in {\mathbb {R}}_-, \end{aligned}$$

with

$$\begin{aligned} \Lambda :={{\,\mathrm{diag}\,}}(e^{-\pi i \kappa \sigma _3},e^{\pi i (\nu -\kappa ) \sigma _3}). \end{aligned}$$

We now look at the non-diagonal entries of the jump matrix \(J_T\). It is expected that these entries to be constant on the supports of the measures. Taking their real part, we arrive at the following conditions.

  • (2, 3)-entry on \({\mathbb {R}}_+\):

    $$\begin{aligned} 2U^{\mu _2}(x)-U^{\mu _1}(x)-U^{\mu _3}(x)+{{\,\mathrm{Re}\,}}\, (V_2(x)-V_3(x))=\ell _2; \end{aligned}$$
  • (2, 1)-entry on \({\mathbb {R}}_-\):

    $$\begin{aligned} 2U^{\mu _1}(x)-U^{\mu _2}(x)+{{\,\mathrm{Re}\,}}\, (V_{1,+}(x)-V_{2,-}(x))=\ell _1; \end{aligned}$$
  • (3, 4)-entry on \({\mathbb {R}}_-\):

    $$\begin{aligned} 2U^{\mu _3}(x)-U^{\mu _2}(x)+{{\,\mathrm{Re}\,}}\,(V_{3,-}(x)-V_{4,+}(x))=\ell _3, \end{aligned}$$

where \(\ell _j\), \(j=1,2,3\), is certain constant. From (A.6), we thus find that the potentials \(Q_1\), \(Q_2\) and \(Q_3\) acting on the measures \(\mu _1\), \(\mu _2\) and \(\mu _3\) should be

$$\begin{aligned} Q_1(x)&= {{\,\mathrm{Re}\,}}\,(V_{1,+}(x)-V_{2,-}(x))= 2\alpha (\sqrt{x})_+ + 2\alpha (\sqrt{x})_-=0, \\ Q_2(x)&= {{\,\mathrm{Re}\,}}\,(V_2(x)-V_3(x))= 2(\beta -\alpha )\sqrt{x}, \\ Q_3(x)&= {{\,\mathrm{Re}\,}}\,(V_{3,-}(x)-V_{4,+}(x))=-2\beta (\sqrt{x})_- -2\beta (\sqrt{x})_+ = 0, \end{aligned}$$

as shown in (2.6).

Finally, we explain the upper constraint. The fact that there is an upper constraint for \(\mu _1\) but not for \(\mu _2,\mu _3\) is connected to the form of the jumps: the equilibrium conditions for \(\mu _1\) play a role in a lower triangular block of the jump matrix, whereas for the remaining measures the corresponding equilibrium conditions appear in an upper triangular block. In virtue of the direction of the variational inequalities for the equilibrium problem, we thus expect that associated to \(\mu _1\) there should be an upper constraint, but no upper constraint should appear on the remaining measures.

To find the explicit form of the constraint, again some ansatz is needed. We expect that the functions \(\lambda _1'\), \(\lambda _2'\), \(\lambda _3'\) and \(\lambda _4'\) should all be solutions to the same algebraic equation (a.k.a. spectral curve). From the sheet structure for the associated Riemann surface, we also expect that \(\lambda _1'\) is analytic across the places where \(\sigma \) is active, that is, \(\lambda _1'\) should be analytic across \({\mathbb {R}}_-{\setminus } {{\,\mathrm{supp}\,}}(\sigma -\mu _1)\). Hence,

$$\begin{aligned} \lambda _{1,+}'(x)-\lambda '_{1,-}(x)=0,\qquad x\in {\mathbb {R}}_- {\setminus } {{\,\mathrm{supp}\,}}(\sigma -\mu _1). \end{aligned}$$

Using the explicit expression for \(\lambda _1\) (see (A.2) and (A.6)) and Plemelj’s formula (3.4), we can rewrite the identity above as

$$\begin{aligned}&\frac{1}{2\pi i}\left( C^{\mu _1}_+(x)-C^{\mu _1}_-(x) +V'_{1,+}(x)-V'_{1,-}(x)\right) \\&\quad =\frac{\,\mathrm {d}\mu _1}{\,\mathrm {d}x}(x)+\frac{\alpha }{2\pi i}\left( (x^{-\frac{1}{2}})_+-(x^{-\frac{1}{2}})_+\right) =0,\qquad x\in {\mathbb {R}}_-{\setminus } {{\,\mathrm{supp}\,}}(\sigma -\mu _1). \end{aligned}$$

Taking into account that \(\mu _1=\sigma \) on \({\mathbb {R}}_-{\setminus } {{\,\mathrm{supp}\,}}(\sigma -\mu _1)\), the identity above gives us

$$\begin{aligned} \frac{\,\mathrm {d}\sigma }{\,\mathrm {d}x}(x)=\frac{\alpha }{\pi \sqrt{|x|}},\qquad x\in {\mathbb {R}}_-{\setminus } {{\,\mathrm{supp}\,}}(\sigma -\mu _1), \end{aligned}$$

which is (2.7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, G.L.F., Zhang, L. Large n Limit for the Product of Two Coupled Random Matrices. Commun. Math. Phys. 377, 2345–2427 (2020). https://doi.org/10.1007/s00220-020-03763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03763-8

Navigation