Skip to main content
Log in

Improved Partial Regularity for Manifold-Constrained Minimisers of Subquadratic Energies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider minimising p-harmonic maps from three-dimensional domains to the real projective plane, for \(1<p<2\). These maps arise as least-energy configurations in variational models for nematic liquid crystals. We show that the singular set of such a map decomposes into a 1-dimensional set, which can be physically interpreted as a non-orientable line defect, and a locally finite set, i.e. a collection of point defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau–de Gennes energy around a spherical colloid particle. Arch. Ration. Mech. Anal. 222(1), 427–450 (2016)

    Google Scholar 

  2. Ball, J.M., Bedford, S.J.: Discontinuous order parameters in liquid crystal theories. Mol. Cryst. Liq. Cryst. 612(1), 1–23 (2015)

    Google Scholar 

  3. Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Google Scholar 

  4. Bethuel, F.: A characterization of maps in \({H}^1({B}^3, {S}^2)\) which can be approximated by smooth maps. Ann. Inst. Henri Poincare (C) Non Linear Anal. 7(4), 269–286 (1990)

    Google Scholar 

  5. Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167(3–4), 153–206 (1991)

    Google Scholar 

  6. Bethuel, F., Chiron, D.: Some questions related to the lifting problem in Sobolev spaces. Contemp. Math. 446, 125–152 (2007)

    Google Scholar 

  7. Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80(1), 60–75 (1988)

    Google Scholar 

  8. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80(1), 37–86 (2000)

    Google Scholar 

  9. Bourgain, J., Brezis, H., Mironescu, P.: Lifting, degree, and distributional Jacobian revisited. Commun. Pure Appl. Math. 58(4), 529–551 (2005)

    Google Scholar 

  10. Bousquet, P., Ponce, A.C., Van Schaftingen, J.: Density of bounded maps in Sobolev spaces into complete manifolds. Ann. Mat. Pura Appl. (1923 -) 196(6), 2261–2301 (2017)

    Google Scholar 

  11. Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705 (1986)

    Google Scholar 

  12. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau–de Gennes model for liquid crystals. ESAIM Control Optim. Calc. Var. 21(1), 101–137 (2015)

    Google Scholar 

  13. Canevari, G.: Line defects in the small elastic constant limit of a three-dimensional Landau–de Gennes model. Arch. Ration. Mech. Anal. 223(2), 591–676 (2017)

    Google Scholar 

  14. Canevari, G., Majumdar, A., Stroffolini, B.: Minimizers of a Landau–de Gennes energy with a subquadratic elastic energy. Arch. Ration. Mech. Anal. 233(3), 1169–1210 (2019)

    Google Scholar 

  15. Canevari, G., Orlandi, G.: Lifting for manifold-valued maps of bounded variation. J. Funct. Anal. (2020). J. Funct. Anal. (2020). https://doi.org/10.1016/j.jfa.2019.108453

  16. Canevari, G., Orlandi, G.: Topological singular set of vector-valued maps, I: applications to manifold-constrained Sobolev and BV spaces. Calc. Var. Partial. Differ. Equ. 58(2), 72 (2019)

    Google Scholar 

  17. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66(6), 965–990 (2013)

    Google Scholar 

  18. Cladis, P.E., Kléman, M.: Non-singular disclinations of strength \(s = + 1\) in nematics. J. Phys. France 33(5–6), 591–598 (1972)

    Google Scholar 

  19. Contreras, A., Lamy, X.: Biaxial escape in nematics at low temperature. J. Funct. Anal. 272(10), 3987–3997 (2017)

    Google Scholar 

  20. Contreras, A., Lamy, X.: Singular perturbation of manifold-valued maps with anisotropic energy. Preprint arXiv arXiv:1809.05170 (2018)

  21. Dávila, J., Ignat, R.: Lifting of BV functions with values in \({S}^1\). C. R. Math. 337(3), 159–164 (2003)

    Google Scholar 

  22. De Pauw, T., Hardt, R.: Rectifiable and flat \(G\) chains in a metric space. Am. J. Math. 134(1), 1–69 (2012)

    Google Scholar 

  23. Di Fratta, G., Robbins, J.M., Slastikov, V., Zarnescu, A.: Half-integer point defects in the \(q\)-tensor theory of nematic liquid crystals. J. Nonlinear Sci. 26, 1–20 (2015)

    Google Scholar 

  24. Diening, L., Stroffolini, B., Verde, A.: The \(\varphi \)-harmonic approximation and the regularity of \(\varphi \)-harmonic maps. J. Differ. Equ. 253, 1943–1958 (2012)

    Google Scholar 

  25. Fleming, W.H.: Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)

    Google Scholar 

  26. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. II. Variational Integrals. Volume 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (1998)

    Google Scholar 

  27. Golovaty, D., Montero, J.A.: On minimizers of a Landau–de Gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 213(2), 447–490 (2014)

    Google Scholar 

  28. Hardt, R., Lin, F.-H.: A remark on \(H^1\) mappings. Manuscr. Math. 56(1), 1–10 (1986)

    Google Scholar 

  29. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  30. Henao, D., Majumdar, A., Pisante, A.: Uniaxial versus biaxial character of nematic equilibria in three dimensions. Calc. Var. Partial Differ. Equ. 56(2), 55 (2017)

    Google Scholar 

  31. Ignat, R.: The space \({BV}({S}^2,{S}^1)\): minimal connection and optimal lifting. Ann. Inst. Henri Poincare (C) Non Linear Anal. 22(3), 283–302 (2005)

    Google Scholar 

  32. Ignat, R., Lamy, X.: Lifting of \({\mathbb{RP}}^{d-1}\)-valued maps in BV and applications to uniaxial \(Q\)-tensors. With an appendix on an intrinsic BV-energy for manifold-valued maps. Preprint arXiv:1706.01281 (2017)

  33. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215(2), 633–673 (2015)

    Google Scholar 

  34. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Instability of point defects in a two-dimensional nematic liquid crystal model. Ann. Inst. Henri Poincare (C) Non Linear Anal. 33(4), 1131–1152 (2016)

    Google Scholar 

  35. Lamy, X.: Some properties of the nematic radial hedgehog in the Landau–de Gennes theory. J. Math. Anal. Appl. 397(2), 586–594 (2013)

    Google Scholar 

  36. Lee, J.M.: Introduction to Riemannian Manifolds. Volume 176 of Graduate Texts in Mathematics. Springer, Cham (2018). (Second edition of [MR1468735])

    Google Scholar 

  37. Luckhaus, S.: \({C}^{1,\varepsilon }\)-regularity for energy minimizing Hölder continuous \(p\)-harmonic maps betweeen Riemannian manifolds. Preprint CMA, Canberra (1986)

  38. Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349–367 (1988)

    Google Scholar 

  39. Majumdar, A., Zarnescu, A.: Landau–De Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Google Scholar 

  40. Mironescu, P., Russ, E., Sire, Y.: Lifting in Besov spaces. Nonlinear Anal. (2019). https://doi.org/10.1016/j.na.2019.03.012

    Google Scholar 

  41. Mironescu, P., Van Schaftingen, J.: Lifting in compact covering spaces for fractional Sobolev mappings. Preprint arXiv arXiv:1907.01373 (2019)

  42. Mucci, D.: Maps into projective spaces: liquid crystal and conformal energies. Discrete Contin. Dyn. B 17(2), 597–635 (2012)

    Google Scholar 

  43. Müller, O.: A note on closed isometric embeddings. J. Math. Anal. Appl. 349(1), 297–298 (2009)

    Google Scholar 

  44. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)

    Google Scholar 

  45. Pakzad, M.R., Rivière, T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003)

    Google Scholar 

  46. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175(2), 197–226 (1995)

    Google Scholar 

  47. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Google Scholar 

  48. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures in Mathematics ETH Zurich. Birkhäuser, Basel (1996)

    Google Scholar 

  49. White, B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    Google Scholar 

  50. White, B.: The deformation theorem for flat chains. Acta Math. 183(2), 255–271 (1999)

    Google Scholar 

  51. White, B.: Rectifiability of flat chains. Ann. of Math. (2) 150(1), 165–184 (1999)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the anonymous referees for their careful reading of the manuscript and for their suggestions, which improved the presentation of the results. G. C.’s research was supported by the Basque Government through the BERC 2018-2021 program and by the Spanish Ministry of Economy and Competitiveness: MTM2017-82184-R. G. O. was partially supported by GNAMPA-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Canevari.

Additional information

Communicated by H. T. Yau

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canevari, G., Orlandi, G. Improved Partial Regularity for Manifold-Constrained Minimisers of Subquadratic Energies. Commun. Math. Phys. 374, 1483–1495 (2020). https://doi.org/10.1007/s00220-019-03675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03675-2

Navigation