Skip to main content
Log in

A Second-Quantized Kolmogorov–Chentsov Theorem via the Operator Product Expansion

Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a direct connection between two fundamental topics: one in probability theory and one in quantum field theory. The first topic is the problem of pointwise multiplication of random Schwartz distributions which has been the object of recent progress thanks to Hairer’s theory of regularity structures and the theory of paracontrolled distributions introduced by Gubinelli, Imkeller and Perkowski. The second topic is Wilson’s operator product expansion which is a general property of models of quantum field theory and a cornerstone of the bootstrap approach to conformal field theory. Our main result is a general theorem for the almost sure construction of products of random distributions by mollification and suitable additive as well as multiplicative renormalizations. The hypothesis for this theorem is the operator product expansion with precise bounds for pointwise correlations. We conjecture these bounds to be universal features of quantum field theories with gapped dimension spectrum. Our theorem can accommodate logarithmic corrections, anomalous scaling dimensions and even lack of translation invariance. However, it only applies to fields with short distance singularities that are milder than white noise. As an application, we provide a detailed treatment of a scalar conformal field theory of mean field type, i.e., the fractional massless free field also known as the fractional Gaussian field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abdesselam, A.: Renormalisation Constructive Explicite. Ph.D. Thesis, École Polytechnique (1997). http://people.virginia.edu/~aa4cr/these.pdf

  2. Abdesselam, A.: Proof of a 43-year-old prediction by Wilson on anomalous scaling for a hierarchical composite field. Slides of June 11, 2015 talk given at the conference “Constructive Renormalization Group: A Conference in Memory of Pierluigi Falco”, Roma, Italy. http://people.virginia.edu/~aa4cr/FalcoConferenceTalk11June2015.pdf

  3. Abdesselam, A.: Towards three-dimensional conformal probability. \({p}\)-Adic Num. Ultrametr. Anal. Appl. 10(4), 233–252 (2018)

  4. Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the \(p\)-adics I: anomalous dimensions (2013). Preprint arXiv:1302.5971 [math.PR]

  5. Abdesselam, A., Rivasseau, V.: An explicit large versus small field multiscale cluster expansion. Rev. Math. Phys. 9(2), 123–199 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adetunji, O.: Remarks on the Wilson–Zimmermann expansion and some properties of the \(m\)-point distribution. Commun. Math. Phys. 48(3), 199–205 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  7. Albeverio, S., Liang, S.: A note on the renormalized square of free quantum fields in space-time dimension \(d\ge 4\). Bull. Sci. Math. 131(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amann, H.: Vector-Valued Distributions and Fourier Multipliers. (Unpublished manuscript) (2003) http://user.math.uzh.ch/amann/files/distributions.pdf

  9. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  10. Baxter, J.: Inequalities for potentials of particle systems. Ill. J. Math. 24(4), 645–652 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Behan, C.: Bootstrapping the long-range Ising model in three dimensions. J. Phys. A 52(7), 075401 (2019)

    Article  ADS  Google Scholar 

  12. Behan, C., Rastelli, L., Rychkov, S., Zan, B.: Long-range critical exponents near the short-range crossover. Phys. Rev. Lett. 118, 241601 (2017)

    Article  ADS  MATH  Google Scholar 

  13. Beilinson, A., Drinfeld, V.: Chiral Algebras, vol. 51. American Mathematical Society Colloquium Publications, Providence (2004)

    MATH  Google Scholar 

  14. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brandt, R.A.: Derivation of renormalized relativistic perturbation theory from finite local field equations. Ann. Phys. 44, 221–265 (1967)

    Article  ADS  Google Scholar 

  16. Breidenbach, M., et al.: Observed behavior of highly inelastic electron–proton scattering. Phys. Rev. Lett. 23, 935–939 (1969)

    Article  ADS  Google Scholar 

  17. Chandra, A., Hairer, M.: An analytic BPHZ theorem for regularity structures (2016). Preprint arXiv:1612.08138 [math.PR]

  18. Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field I. Uniqueness of the critical scaling limit. Ann. Probab. 43(2), 528–571 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. (2) 181(3), 1087–1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Collins, J.C.: Renormalization. An Introduction to Renormalization, The Renormalization Group, and The Operator-Product Expansion. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  21. Da Prato, G., Tubaro, L.: Wick powers in stochastic PDEs: an introduction (2007). Preprint. http://eprints.biblio.unitn.it/1189/

  22. David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2) 120(2), 371–397 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  24. Dirac, P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)

    Article  ADS  MATH  Google Scholar 

  25. Doležal, V.: A representation of linear continuous operators on testing functions and distributions. SIAM J. Math. Anal. 1, 491–506 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dubédat, J.: Exact bosonization of the Ising model (2011). Preprint. arXiv:1112.4399 [math.PR]

  27. E, W., Jentzen, A., Shen, H.: Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations. Nonlinear Anal. 142, 152–193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys. 100(1), 23–55 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Construction and Borel summability of infrared \(\Phi _4^4\) by a phase space expansion. Commun. Math. Phys. 109(3), 437–480 (1987)

    Article  ADS  Google Scholar 

  30. Fernique, X.: Processus linéaires, processus généralisés. Ann. Inst. Fourier (Grenoble) 17(1), 1–92 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Frank, R., Lieb, E.: Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality. Calc. Var. Part. Differ. Equ. 39(1–2), 85–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry, vol. II, pp. 387–533. Springer, Berlin (2007)

    Chapter  Google Scholar 

  33. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  34. Fröb, M.B., Holland, J.: All-order existence of and recursion relations for the operator product expansion in Yang–Mills theory (2016). Preprint arXiv:1603.08012 [math-ph]

  35. Fröb, M.B., Holland, J., Hollands, S.: All-order bounds for correlation functions of gauge-invariant operators in Yang–Mills theory. J. Math. Phys. 57(12), 122301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Furlan, M., Mourrat, J.-C.: A tightness criterion for random fields, with application to the Ising model. Electron. J. Probab. 22, 97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Garrett, P.: Weil-Schwartz envelopes for rapidly decreasing functions. Miscellaneous notes (2004). http://www.math.umn.edu/~garrett/m/fun/weil_schwartz_envelope.pdf

  38. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Vol. I: Properties and Operations. Translated by E. Saletan. Academic Press, New York (1964)

    MATH  Google Scholar 

  39. Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  40. Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires, vol. 16. American Mathematical Society, Providence (1955)

    MATH  Google Scholar 

  41. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, 75 (2015)

  42. Gunson, J., Panta, L.S.: Two-dimensional neutral Coulomb gas. Commun. Math. Phys. 52(3), 295–304 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Hairer, M., Shen, H.: The dynamical sine-Gordon model. Commun. Math. Phys. 341(3), 933–989 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Heisenberg, W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–231 (1934)

    Article  ADS  MATH  Google Scholar 

  46. Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936)

    Article  ADS  MATH  Google Scholar 

  47. Hida, T.: Brownian Motion. Translated from the Japanese by the author and T. P. Speed. Applications of Mathematics, vol. 11. Springer, New York (1980)

    MATH  Google Scholar 

  48. Hollands, S., Kopper, C.: The operator product expansion converges in perturbative field theory. Commun. Math. Phys. 313(1), 257–290 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Springer Study Edition, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  50. Horváth, J.: Topological Vector Spaces and Distributions, vol. I. Addison-Wesley Publishing, Reading (1966)

    MATH  Google Scholar 

  51. Junnila, J., Saksman, E., Webb, C.: Imaginary multiplicative chaos: moments, regularity and connections to the Ising model (2018). Preprint arXiv:1806.02118 [math.PR]

  52. Kadanoff, L.P.: Correlations along a line in the two-dimensional Ising model. Phys. Rev. 188, 859–863 (1969)

    Article  ADS  Google Scholar 

  53. Kadanoff, L.P.: Operator algebra and the determination of critical indices. Phys. Rev. Lett. 23, 1430–1433 (1969)

    Article  ADS  Google Scholar 

  54. Karateev, D., Kravchuk, P., Simmons-Duffin, D.: Harmonic analysis and mean field theory. J. High Energy Phys. 2019(10), 217 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Keller, G., Kopper, C.: Perturbative renormalization of composite operators via flow equations. I. Commun. Math. Phys. 148(3), 445–467 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Keller, G., Kopper, C.: Perturbative renormalization of composite operators via flow equations. II. Short distance expansion. Commun. Math. Phys. 153(2), 245–276 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Kupiainen, A., Rhodes, R., Vargas, V.: Local conformal structure of Liouville quantum gravity. Commun. Math. Phys. 371(3), 1005–1069 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Kytölä, K., Peltola, E.: Pure partition functions of multiple SLEs. Commun. Math. Phys. 346(1), 237–292 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos. Commun. Math. Phys. 337(2), 569–632 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Lieb, E., Yau, H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118(2), 177–213 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Lodhia, A., Sheffield, S., Sun, X., Watson, S.: Fractional Gaussian fields: a survey. Probab. Surv. 13, 1–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lüscher, M.: Operator product expansions on the vacuum in conformal quantum field theory in two spacetime dimensions. Commun. Math. Phys. 50(1), 23–52 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  63. Mack, G.: Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory. Commun. Math. Phys. 53(2), 155–184 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  64. Meidan, R.: Translation varying linear operators. SIAM J. Appl. Math. 22, 419–436 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  65. Meyer, Y., Coifman, R.: Wavelets. Calderón–Zygmund and Multilinear Operators. Translated from the 1990 and 1991 French originals by D. Salinger. Cambridge Studies in Advanced Mathematics, vol. 48. Cambridge University Press, Cambridge (1997)

  66. Miyazaki, K.: Distinguished elements in a space of distributions. J. Sci. Hiroshima Univ. Ser. A 24, 527–533 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  67. Newman, C.: Gaussian correlation inequalities for ferromagnets. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33(2), 75–93 (1975/76)

  68. Oikarinen, J.: Smoothness of correlation functions in Liouville conformal field theory. Ann. Henri Poincaré 20(7), 2377–2406 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Onsager, L.: Electrostatic interaction between molecules. J. Phys. Chem. 43, 189–196 (1939)

    Article  Google Scholar 

  70. Paulos, M., Rychkov, S., van Rees, B., Zan, B.: Conformal invariance in the long-range Ising model. Nuclear Phys. B 902, 246–291 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Peltola, E.: Toward a conformal field theory for Schramm–Loewner evolutions. J. Math. Phys. 60(10), 103305 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Peltola, E., Wu, H.: Global and local multiple SLEs for \(\kappa \le 4\) and connection probabilities for level lines of GFF. Commun. Math. Phys. 366(2), 469–536 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Petzeltová, H., Vrbová, P.: Factorization in the algebra of rapidly decreasing functions on \({\mathbf{R}}_n\). Comment. Math. Univ. Carolin. 19(3), 489–499 (1978)

    MathSciNet  MATH  Google Scholar 

  74. Polyakov, A.M.: Properties of long and short range correlations in the critical region. Sov. Phys. JETP 30, 151–157 (1970)

    ADS  Google Scholar 

  75. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton Series in Physics. Princeton University Press, Princeton (1991)

    Book  Google Scholar 

  76. Rychkov, S.: EPFL lectures on conformal field theory in \(D\geqslant 3\) dimensions (2016). Preprint arXiv:1601.05000 [hep-th]

  77. Schlieder, S., Seiler, E.: Remarks concerning the connection between properties of the 4-point-function and the Wilson–Zimmermann expansion. Commun. Math. Phys. 31, 137–159 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Schroer, B., Swieca, J.A., Völkel, A.H.: Global operator expansions in conformally invariant relativistic quantum field theory. Phys. Rev. D 11, 1509–1520 (1975)

    Article  ADS  Google Scholar 

  79. Schwartz, L.: Théorie des Distributions. Tome I. Actualités Sci. Ind. vol. 1091. Publ. Inst. Math. Univ. Strasbourg 9, Hermann & Cie., Paris (1950)

  80. Schwartz, L.: Théorie des distributions. Tome II. Actualités Sci. Ind., vol. 1122. Publ. Inst. Math. Univ. Strasbourg 10, Hermann & Cie., Paris (1951)

  81. Schwartz, L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)

    MathSciNet  MATH  Google Scholar 

  82. Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Ann. Inst. Fourier (Grenoble) 7, 1–141 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  83. Segal, I.: Nonlinear functions of weak processes. I. J. Funct. Anal. 4, 404–456 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  84. Simmons-Duffin, D.: TASI lectures on the conformal bootstrap (2016). Preprint arXiv:1602.07982 [hep-th]

  85. Simon, B.: The \(P(\phi )_2\) Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)

    Google Scholar 

  86. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  87. Unterberger, J.: Mode d’emploi de la théorie constructive des champs bosoniques, avec une application aux chemins rugueux. Conflu. Math. 4(1), 1240004 (2012)

    Article  MATH  Google Scholar 

  88. Valatin, J.G.: Singularities of electron kernel functions in an external electromagnetic field. Proc. R. Soc. Lond. Ser. A. 222, 93–108 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Voigt, J.: Factorization in some Fréchet algebras of differentiable functions. Studia Math. 77(4), 333–348 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  90. Wilson, K.G.: On products of quantum field operators at short distances. Unpublished. Cornell University. Preprint (1964)

  91. Wilson, K.G., Zimmermann, W.: Operator product expansions and composite field operators in the general framework of quantum field theory. Commun. Math. Phys. 24, 87–106 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Witten, E.: Perturbative quantum field theory. In: Deligne, P., et al. (eds.) Quantum Fields and Strings: A Course for Mathematicians, vol. I. American Mathematical Society, Providence (1999)

    Google Scholar 

  93. Wu, H.: Hypergeometric SLE: conformal Markov characterization and applications (2017). Preprint arXiv:1703.02022 [math.PR]

  94. Zemanian, A.H.: Realizability Theory for Continuous Linear Systems. Mathematics in Science and Engineering, vol. 97. Academic Press, New York (1972)

    MATH  Google Scholar 

  95. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. International Series of Monographs on Physics, vol. 77. Oxford Science Publications, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

This work would have been impossible without a semester leave from teaching and administrative duties in the form of a Sesquicentennial Associate Award. Therefore, the support of the Mathematics Department and the College and Graduate School of Arts and Sciences at the University of Virginia is very gratefully acknowledged. For useful discussions or correspondence we thank A. Chandra, J. Dubedat, J. Fageot, M. Furlan, C. Garban, M. Gubinelli, M. Hairer, S. Hollands, C. Hongler, C. Kopper, A. Kupiainen, P. Mitter, J.-C. Mourrat, J. Oikarinen, E. Peltola, V. Rychkov, E. Seiler, D. Simmons-Duffin, V. Vargas and E. Witten. Finally, we thank the anonymous referees for suggestions which helped improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Abdesselam.

Additional information

Communicated by M. Hairer

Dedicated to the memory of Roland Sénéor (1938–2016)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdesselam, A. A Second-Quantized Kolmogorov–Chentsov Theorem via the Operator Product Expansion. Commun. Math. Phys. 376, 555–608 (2020). https://doi.org/10.1007/s00220-019-03665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03665-4

Navigation