Abstract
We establish a direct connection between two fundamental topics: one in probability theory and one in quantum field theory. The first topic is the problem of pointwise multiplication of random Schwartz distributions which has been the object of recent progress thanks to Hairer’s theory of regularity structures and the theory of paracontrolled distributions introduced by Gubinelli, Imkeller and Perkowski. The second topic is Wilson’s operator product expansion which is a general property of models of quantum field theory and a cornerstone of the bootstrap approach to conformal field theory. Our main result is a general theorem for the almost sure construction of products of random distributions by mollification and suitable additive as well as multiplicative renormalizations. The hypothesis for this theorem is the operator product expansion with precise bounds for pointwise correlations. We conjecture these bounds to be universal features of quantum field theories with gapped dimension spectrum. Our theorem can accommodate logarithmic corrections, anomalous scaling dimensions and even lack of translation invariance. However, it only applies to fields with short distance singularities that are milder than white noise. As an application, we provide a detailed treatment of a scalar conformal field theory of mean field type, i.e., the fractional massless free field also known as the fractional Gaussian field.
This is a preview of subscription content, access via your institution.
References
Abdesselam, A.: Renormalisation Constructive Explicite. Ph.D. Thesis, École Polytechnique (1997). http://people.virginia.edu/~aa4cr/these.pdf
Abdesselam, A.: Proof of a 43-year-old prediction by Wilson on anomalous scaling for a hierarchical composite field. Slides of June 11, 2015 talk given at the conference “Constructive Renormalization Group: A Conference in Memory of Pierluigi Falco”, Roma, Italy. http://people.virginia.edu/~aa4cr/FalcoConferenceTalk11June2015.pdf
Abdesselam, A.: Towards three-dimensional conformal probability. \({p}\)-Adic Num. Ultrametr. Anal. Appl. 10(4), 233–252 (2018)
Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the \(p\)-adics I: anomalous dimensions (2013). Preprint arXiv:1302.5971 [math.PR]
Abdesselam, A., Rivasseau, V.: An explicit large versus small field multiscale cluster expansion. Rev. Math. Phys. 9(2), 123–199 (1997)
Adetunji, O.: Remarks on the Wilson–Zimmermann expansion and some properties of the \(m\)-point distribution. Commun. Math. Phys. 48(3), 199–205 (1976)
Albeverio, S., Liang, S.: A note on the renormalized square of free quantum fields in space-time dimension \(d\ge 4\). Bull. Sci. Math. 131(1), 1–11 (2007)
Amann, H.: Vector-Valued Distributions and Fourier Multipliers. (Unpublished manuscript) (2003) http://user.math.uzh.ch/amann/files/distributions.pdf
Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)
Baxter, J.: Inequalities for potentials of particle systems. Ill. J. Math. 24(4), 645–652 (1980)
Behan, C.: Bootstrapping the long-range Ising model in three dimensions. J. Phys. A 52(7), 075401 (2019)
Behan, C., Rastelli, L., Rychkov, S., Zan, B.: Long-range critical exponents near the short-range crossover. Phys. Rev. Lett. 118, 241601 (2017)
Beilinson, A., Drinfeld, V.: Chiral Algebras, vol. 51. American Mathematical Society Colloquium Publications, Providence (2004)
Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2), 209–246 (1981)
Brandt, R.A.: Derivation of renormalized relativistic perturbation theory from finite local field equations. Ann. Phys. 44, 221–265 (1967)
Breidenbach, M., et al.: Observed behavior of highly inelastic electron–proton scattering. Phys. Rev. Lett. 23, 935–939 (1969)
Chandra, A., Hairer, M.: An analytic BPHZ theorem for regularity structures (2016). Preprint arXiv:1612.08138 [math.PR]
Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field I. Uniqueness of the critical scaling limit. Ann. Probab. 43(2), 528–571 (2015)
Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. (2) 181(3), 1087–1138 (2015)
Collins, J.C.: Renormalization. An Introduction to Renormalization, The Renormalization Group, and The Operator-Product Expansion. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)
Da Prato, G., Tubaro, L.: Wick powers in stochastic PDEs: an introduction (2007). Preprint. http://eprints.biblio.unitn.it/1189/
David, G., Journé, J.-L.: A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. (2) 120(2), 371–397 (1984)
Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York (1997)
Dirac, P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)
Doležal, V.: A representation of linear continuous operators on testing functions and distributions. SIAM J. Math. Anal. 1, 491–506 (1970)
Dubédat, J.: Exact bosonization of the Ising model (2011). Preprint. arXiv:1112.4399 [math.PR]
E, W., Jentzen, A., Shen, H.: Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations. Nonlinear Anal. 142, 152–193 (2016)
Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys. 100(1), 23–55 (1985)
Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Construction and Borel summability of infrared \(\Phi _4^4\) by a phase space expansion. Commun. Math. Phys. 109(3), 437–480 (1987)
Fernique, X.: Processus linéaires, processus généralisés. Ann. Inst. Fourier (Grenoble) 17(1), 1–92 (1967)
Frank, R., Lieb, E.: Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality. Calc. Var. Part. Differ. Equ. 39(1–2), 85–99 (2010)
Frenkel, E.: Lectures on the Langlands program and conformal field theory. In: Cartier, P., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry, vol. II, pp. 387–533. Springer, Berlin (2007)
Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2001)
Fröb, M.B., Holland, J.: All-order existence of and recursion relations for the operator product expansion in Yang–Mills theory (2016). Preprint arXiv:1603.08012 [math-ph]
Fröb, M.B., Holland, J., Hollands, S.: All-order bounds for correlation functions of gauge-invariant operators in Yang–Mills theory. J. Math. Phys. 57(12), 122301 (2016)
Furlan, M., Mourrat, J.-C.: A tightness criterion for random fields, with application to the Ising model. Electron. J. Probab. 22, 97 (2017)
Garrett, P.: Weil-Schwartz envelopes for rapidly decreasing functions. Miscellaneous notes (2004). http://www.math.umn.edu/~garrett/m/fun/weil_schwartz_envelope.pdf
Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Vol. I: Properties and Operations. Translated by E. Saletan. Academic Press, New York (1964)
Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987)
Grothendieck, A.: Produits Tensoriels Topologiques et Espaces Nucléaires, vol. 16. American Mathematical Society, Providence (1955)
Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, 75 (2015)
Gunson, J., Panta, L.S.: Two-dimensional neutral Coulomb gas. Commun. Math. Phys. 52(3), 295–304 (1977)
Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)
Hairer, M., Shen, H.: The dynamical sine-Gordon model. Commun. Math. Phys. 341(3), 933–989 (2016)
Heisenberg, W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–231 (1934)
Heisenberg, W., Euler, H.: Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714–732 (1936)
Hida, T.: Brownian Motion. Translated from the Japanese by the author and T. P. Speed. Applications of Mathematics, vol. 11. Springer, New York (1980)
Hollands, S., Kopper, C.: The operator product expansion converges in perturbative field theory. Commun. Math. Phys. 313(1), 257–290 (2012)
Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Springer Study Edition, 2nd edn. Springer, Berlin (1990)
Horváth, J.: Topological Vector Spaces and Distributions, vol. I. Addison-Wesley Publishing, Reading (1966)
Junnila, J., Saksman, E., Webb, C.: Imaginary multiplicative chaos: moments, regularity and connections to the Ising model (2018). Preprint arXiv:1806.02118 [math.PR]
Kadanoff, L.P.: Correlations along a line in the two-dimensional Ising model. Phys. Rev. 188, 859–863 (1969)
Kadanoff, L.P.: Operator algebra and the determination of critical indices. Phys. Rev. Lett. 23, 1430–1433 (1969)
Karateev, D., Kravchuk, P., Simmons-Duffin, D.: Harmonic analysis and mean field theory. J. High Energy Phys. 2019(10), 217 (2019)
Keller, G., Kopper, C.: Perturbative renormalization of composite operators via flow equations. I. Commun. Math. Phys. 148(3), 445–467 (1992)
Keller, G., Kopper, C.: Perturbative renormalization of composite operators via flow equations. II. Short distance expansion. Commun. Math. Phys. 153(2), 245–276 (1993)
Kupiainen, A., Rhodes, R., Vargas, V.: Local conformal structure of Liouville quantum gravity. Commun. Math. Phys. 371(3), 1005–1069 (2019)
Kytölä, K., Peltola, E.: Pure partition functions of multiple SLEs. Commun. Math. Phys. 346(1), 237–292 (2016)
Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos. Commun. Math. Phys. 337(2), 569–632 (2015)
Lieb, E., Yau, H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118(2), 177–213 (1988)
Lodhia, A., Sheffield, S., Sun, X., Watson, S.: Fractional Gaussian fields: a survey. Probab. Surv. 13, 1–56 (2016)
Lüscher, M.: Operator product expansions on the vacuum in conformal quantum field theory in two spacetime dimensions. Commun. Math. Phys. 50(1), 23–52 (1976)
Mack, G.: Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory. Commun. Math. Phys. 53(2), 155–184 (1977)
Meidan, R.: Translation varying linear operators. SIAM J. Appl. Math. 22, 419–436 (1972)
Meyer, Y., Coifman, R.: Wavelets. Calderón–Zygmund and Multilinear Operators. Translated from the 1990 and 1991 French originals by D. Salinger. Cambridge Studies in Advanced Mathematics, vol. 48. Cambridge University Press, Cambridge (1997)
Miyazaki, K.: Distinguished elements in a space of distributions. J. Sci. Hiroshima Univ. Ser. A 24, 527–533 (1960)
Newman, C.: Gaussian correlation inequalities for ferromagnets. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33(2), 75–93 (1975/76)
Oikarinen, J.: Smoothness of correlation functions in Liouville conformal field theory. Ann. Henri Poincaré 20(7), 2377–2406 (2019)
Onsager, L.: Electrostatic interaction between molecules. J. Phys. Chem. 43, 189–196 (1939)
Paulos, M., Rychkov, S., van Rees, B., Zan, B.: Conformal invariance in the long-range Ising model. Nuclear Phys. B 902, 246–291 (2016)
Peltola, E.: Toward a conformal field theory for Schramm–Loewner evolutions. J. Math. Phys. 60(10), 103305 (2019)
Peltola, E., Wu, H.: Global and local multiple SLEs for \(\kappa \le 4\) and connection probabilities for level lines of GFF. Commun. Math. Phys. 366(2), 469–536 (2019)
Petzeltová, H., Vrbová, P.: Factorization in the algebra of rapidly decreasing functions on \({\mathbf{R}}_n\). Comment. Math. Univ. Carolin. 19(3), 489–499 (1978)
Polyakov, A.M.: Properties of long and short range correlations in the critical region. Sov. Phys. JETP 30, 151–157 (1970)
Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton Series in Physics. Princeton University Press, Princeton (1991)
Rychkov, S.: EPFL lectures on conformal field theory in \(D\geqslant 3\) dimensions (2016). Preprint arXiv:1601.05000 [hep-th]
Schlieder, S., Seiler, E.: Remarks concerning the connection between properties of the 4-point-function and the Wilson–Zimmermann expansion. Commun. Math. Phys. 31, 137–159 (1973)
Schroer, B., Swieca, J.A., Völkel, A.H.: Global operator expansions in conformally invariant relativistic quantum field theory. Phys. Rev. D 11, 1509–1520 (1975)
Schwartz, L.: Théorie des Distributions. Tome I. Actualités Sci. Ind. vol. 1091. Publ. Inst. Math. Univ. Strasbourg 9, Hermann & Cie., Paris (1950)
Schwartz, L.: Théorie des distributions. Tome II. Actualités Sci. Ind., vol. 1122. Publ. Inst. Math. Univ. Strasbourg 10, Hermann & Cie., Paris (1951)
Schwartz, L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)
Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Ann. Inst. Fourier (Grenoble) 7, 1–141 (1957)
Segal, I.: Nonlinear functions of weak processes. I. J. Funct. Anal. 4, 404–456 (1969)
Simmons-Duffin, D.: TASI lectures on the conformal bootstrap (2016). Preprint arXiv:1602.07982 [hep-th]
Simon, B.: The \(P(\phi )_2\) Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)
Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)
Unterberger, J.: Mode d’emploi de la théorie constructive des champs bosoniques, avec une application aux chemins rugueux. Conflu. Math. 4(1), 1240004 (2012)
Valatin, J.G.: Singularities of electron kernel functions in an external electromagnetic field. Proc. R. Soc. Lond. Ser. A. 222, 93–108 (1954)
Voigt, J.: Factorization in some Fréchet algebras of differentiable functions. Studia Math. 77(4), 333–348 (1984)
Wilson, K.G.: On products of quantum field operators at short distances. Unpublished. Cornell University. Preprint (1964)
Wilson, K.G., Zimmermann, W.: Operator product expansions and composite field operators in the general framework of quantum field theory. Commun. Math. Phys. 24, 87–106 (1972)
Witten, E.: Perturbative quantum field theory. In: Deligne, P., et al. (eds.) Quantum Fields and Strings: A Course for Mathematicians, vol. I. American Mathematical Society, Providence (1999)
Wu, H.: Hypergeometric SLE: conformal Markov characterization and applications (2017). Preprint arXiv:1703.02022 [math.PR]
Zemanian, A.H.: Realizability Theory for Continuous Linear Systems. Mathematics in Science and Engineering, vol. 97. Academic Press, New York (1972)
Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. International Series of Monographs on Physics, vol. 77. Oxford Science Publications, New York (1989)
Acknowledgements
This work would have been impossible without a semester leave from teaching and administrative duties in the form of a Sesquicentennial Associate Award. Therefore, the support of the Mathematics Department and the College and Graduate School of Arts and Sciences at the University of Virginia is very gratefully acknowledged. For useful discussions or correspondence we thank A. Chandra, J. Dubedat, J. Fageot, M. Furlan, C. Garban, M. Gubinelli, M. Hairer, S. Hollands, C. Hongler, C. Kopper, A. Kupiainen, P. Mitter, J.-C. Mourrat, J. Oikarinen, E. Peltola, V. Rychkov, E. Seiler, D. Simmons-Duffin, V. Vargas and E. Witten. Finally, we thank the anonymous referees for suggestions which helped improve this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Hairer
Dedicated to the memory of Roland Sénéor (1938–2016)
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Abdesselam, A. A Second-Quantized Kolmogorov–Chentsov Theorem via the Operator Product Expansion. Commun. Math. Phys. 376, 555–608 (2020). https://doi.org/10.1007/s00220-019-03665-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-019-03665-4