Highest Weight Vectors in Plethysms


We realize the \(\mathrm {GL}_n(\mathbb {C})\)-modules \(S^k(S^m(\mathbb {C}^n))\) and \(\Lambda ^k(S^m(\mathbb {C}^n))\) as spaces of polynomial functions on \(n\times k\) matrices. In the case \(k=3\), we describe explicitly all the \(\mathrm {GL}_n(\mathbb {C})\)-highest weight vectors which occur in \(S^3(S^m(\mathbb {C}^n))\) and in \(\Lambda ^3(S^m(\mathbb {C}^n))\) respectively. In particular, we obtain alternative formulas for the multiplicities in these modules.

This is a preview of subscription content, access via your institution.


  1. [dBPW]

    de Boeck, M., Paget, R., Wildon, M.: Plethysms of symmetric functions and highest weight representations, arXiv:1810.03448

  2. [CLO]

    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Second edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, An Introduction to Computational Algebraic Geometry and Commutative Algebra (1997)

  3. [DS]

    Dent, S., Siemons, J.: On a conjecture of Foulkes. J. Algebra 226, 236–249 (2000)

    MathSciNet  Article  Google Scholar 

  4. [D]

    Duncan, D.G.: On D. E. Littlewood’s Algebra of \(S\)-Functions. Can. J. Math. 4, 504–512 (1952)

    MathSciNet  Article  Google Scholar 

  5. [Fo]

    Foulkes, H.O.: Plethysm of \(S\)-functions. Philos. Trans. R. Soc. A 246, 555–591 (1954)

    ADS  MathSciNet  MATH  Google Scholar 

  6. [F]

    Fulton, W.: Young Tableaux, London Mathematical Society Student Texts 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. [GW]

    Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups, Encyclopedia of Mathematics and its Applications 68. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  8. [H1]

    Howe, R.: \((GL_n,GL_m)\)-duality and symmetric plethysm. In: Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1–3, 85–109 (1988)

  9. [H2]

    Howe, R.: Perspectives on Invariant Theory, The Schur Lectures, I. Piatetski-Shapiro and S. Gelbart (eds.), Israel Mathematical Conference Proceedings, 1–182 (1995)

  10. [HKL]

    Howe, R., Kim, S., Lee, S.T.: Double Pieri algebras and iterated Pieri algebras for the classical groups. Am. J. Math. 139(2), 347–401 (2017)

    MathSciNet  Article  Google Scholar 

  11. [HL]

    Howe, R., Lee, S.T.: Why should the Littlewood–Richardson rule be true. Bull. Am. Math. Soc. 43, 187–236 (2012)

    MathSciNet  Article  Google Scholar 

  12. [Le]

    Lee, S.T: Branching rules and branching algebras for the complex classical groups, COE Lecture Note, 47, Math-for-Industry (MI) Lecture Note Series, Kyushu University, Faculty of Mathematics, Fukuoka. ii+41 pp (2013)

  13. [Li]

    Littlewood, D.E.: The Theory of Group Characters, 2nd edn. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  14. [LR]

    Loehr, N.A., Remmel, J.B.: A computational and combinatorial exposé of plethystic calculus. J. Alg. Comb. 33, 163–198 (2011)

    Article  Google Scholar 

  15. [Ma]

    Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  16. [P]

    Plunkett, S.P.O.: On the Plethysm of \(S\)-functions. Can. J. Math. 24, 541–552 (1972)

    MathSciNet  Article  Google Scholar 

  17. [S]

    Stanley, R.P: Positivity problems and conjectures in algebraic combinatorics. Mathematics: frontiers and perspectives, 295–319, Amer. Math. Soc., Providence, RI (2000)

  18. [T]

    Thrall, R.M.: On symmetrized Kronecker powers and the structre of the free Lie ring. Am. J. Math. 64, 371–378 (1944)

    Article  Google Scholar 

Download references


The authors would like to thank the anonymous referees for their valuable comments and information on several existing results on plethysms.

Author information



Corresponding author

Correspondence to Kazufumi Kimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kazufumi Kimoto is partially supported by Grant-in-Aid for Scientific Research (C) No. 18K03248, JSPS and by JST CREST Grant Number JPMJCR14D6, Japan. Soo Teck Lee is supported by NUS Grant R-146-000-252-114.

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimoto, K., Lee, S.T. Highest Weight Vectors in Plethysms. Commun. Math. Phys. 378, 1817–1841 (2020). https://doi.org/10.1007/s00220-019-03639-6

Download citation