Skip to main content
Log in

Wave Equations with Moving Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the some reversed Strichartz estimates along general time-like trajectories for wave equations in \({\mathbb {R}}^{3}\). Some applications of the reversed Strichartz estimates and the structure of wave operators to the wave equation with one potential are also discussed. These techniques are useful to analyze the stability problem of traveling solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Beceanu, M., Goldberg, M.: Strichartz estimates and maximal operators for the wave equation in \({\mathbb{R}}^{3}\). J. Funct. Anal. 266(3), 1476–1510 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, vol. 46. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  4. Beceanu, M.: Structure of wave operators for a scaling-critical class of potentials. Am. J. Math. 136(2), 255–308 (2014)

    Article  MathSciNet  Google Scholar 

  5. Beceanu, M.: Personal communication

  6. Beceanu, M.: New estimates for a time-dependent Schrödinger equation. Duke Math. J. 159(3), 417–477 (2011)

    Article  MathSciNet  Google Scholar 

  7. Beceanu, M.: Decay estimates for the wave equation in two dimensions. J. Differ. Equ. 260(6), 5378–5420 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Beceanu, M., Schlag, W.: Structure formulas for wave operators. Preprint (2016). arXiv:1612.07304

  9. Beceanu, M., Soffer, A.: The Schrödinger equation with a potential in rough motion. Comm. Partial Differ. Equ. 37(6), 969–1000 (2012)

    Article  Google Scholar 

  10. Cassani, D., Ruf, B., Tarsi, C.: Optimal Sobolev type inequalities in Lorentz spaces. Potential Anal. 39(3), 265–285 (2013)

    Article  MathSciNet  Google Scholar 

  11. Chen, G.: Strichartz estimates for charge transfer models. Discrete Contin. Dyn. Syst. 37(3), 1201–1226 (2017)

    Article  MathSciNet  Google Scholar 

  12. Chen, G.: Strichartz estimates for wave equations with charge transfer Hamiltonian. Preprint (2016). arXiv:1610.05226

  13. Chen, G.: Multisolitons for the defocusing energy critical wave equation with potentials. Commun. Math. Phys. 364(1), 45–82 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, G., Jendrej, J.: Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein–Gordon equations. arXiv:1812.07322

  15. Ginibre, J., Velo, G.: Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1), 50–68 (1995)

    Article  MathSciNet  Google Scholar 

  16. Graf, J.M.: Phase space analysis of the charge transfer. Model. Helv. Phys. Acta 63, 107–138 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Jia, H., Liu, B.P., Schlag, W., Xu, G.X.: Generic and non-generic behavior of solutions to the defocusing energy critical wave equation with potential in the radial case. Preprint (2015). arXiv:1506.04763

  18. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  19. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)

    Article  MathSciNet  Google Scholar 

  20. Krieger, J., Schlag, W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)

    Article  MathSciNet  Google Scholar 

  21. Machihara, S., Nakamura, M., Nakanishi, K., Ozawa, T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  22. Lawrie, A., Schlag, W.: Scattering for wave maps exterior to a ball. Adv. Math. 232, 57–97 (2013)

    Article  MathSciNet  Google Scholar 

  23. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis. Cambridge Studies in Advanced Mathematics, Vol. I, vol. 139. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  24. Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2011)

    Book  Google Scholar 

  25. Nakanishi, K., Schlag, W.: Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption. Arch. Ration. Mech. Anal. 203(3), 809–851 (2012)

    Article  MathSciNet  Google Scholar 

  26. Oh, S.-J.: A reversed Strichartz estimate in \({\mathbb{R}}^{1+2}\)

  27. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Rodnianski, I., Schlag, W., Soffer, A.: Dispersive analysis of charge transfer models. Commun. Pure Appl. Math. 58(2), 149–216 (2005)

    Article  MathSciNet  Google Scholar 

  29. Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS. Preprint (2003). arXiv preprint arXiv:math/0309114

  30. Schlag, W.: Dispersive Estimates for Schrödinger Operators: A Survey. Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies, vol. 163, pp. 255–285. Princeton University Press, Princeton, NJ (2007)

    MATH  Google Scholar 

  31. Tao, T.: Nonlinear dispersive equations. Local and global analysis. In: CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006)

  32. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 479–500 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Yajima, K.: The \(W^{k, p}\) continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

I want to thank Marius Beceanu for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Chen.

Additional information

Communicated by W. Schlag

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Pointwise Decay

For the sake of completeness, in this appendix, we provide the proof of dispersive estimates for the free wave equation in \({\mathbb {R}}^{3}\) based on the idea of reversed Strichartz estimates.

Theorem A.1

In \({\mathbb {R}}^{3}\), suppose \(f\in L^{2},\,\nabla f\in L^{1}\) and \(g\in L^{2},\,\Delta g\in L^{1}\). Then one has the following estimates:

$$\begin{aligned}&\left\| \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\right\| _{L_{x}^{\infty }}\lesssim \frac{1}{\left| t\right| }\left\| \nabla f\right\| _{L_{x}^{1}}, \end{aligned}$$
(A.1)
$$\begin{aligned}&\left\| \cos \left( t\sqrt{-\Delta }\right) g\right\| _{L_{x}^{\infty }}\lesssim \frac{1}{\left| t\right| }\left\| \Delta g\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.2)

Remark

Note that the second estimate is slightly different from the estimates commonly used in the literature. For example, in Krieger–Schlag [KS] one needs the \(L^{1}\) norm of \(D^{2}g\) instead of \(\Delta g\).

Proof

First of all, we consider

$$\begin{aligned} \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f. \end{aligned}$$
(A.3)

In \({\mathbb {R}}^{3}\), one has

$$\begin{aligned} \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f=\frac{1}{4\pi t}\int _{\left| x-y\right| =t}f(y)\,dy. \end{aligned}$$
(A.4)

Without loss of generality, we assume \(t\ge 0\).

Multiplying t and integrating, we obtain

$$\begin{aligned} \int _{0}^{\infty }\left| t\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\right| dt\lesssim & {} \int _{0}^{\infty }\int _{{\mathbb {S}}^{2}}\left| f(x+r\omega )\right| r^{2}\,d\omega dr\nonumber \\\lesssim & {} \left\| f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.5)

Therefore,

$$\begin{aligned} \left\| t\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\right\| _{L_{x}^{\infty }L_{t}^{1}}\lesssim \left\| f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.6)

Notice that, from the estimate above, we also have

$$\begin{aligned} \left\| \int _{t}^{\infty }\frac{\sin \left( s\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\,ds\right\| _{L_{x}^{\infty }}\lesssim \frac{1}{\left| t\right| }\left\| f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.7)

Replacing f with \(\Delta f\), it implies that

$$\begin{aligned} \left\| \int _{t}^{\infty }\sqrt{-\Delta }\sin \left( s\sqrt{-\Delta }\right) f\,ds\right\| _{L_{x}^{\infty }}\lesssim \frac{1}{\left| t\right| }\left\| \Delta f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.8)

On the other hand,

$$\begin{aligned} \int _{0}^{\infty }\left| t\cos \left( t\sqrt{-\Delta }\right) f\right| dt\lesssim & {} \int _{0}^{\infty }\int _{{\mathbb {S}}^{2}}\left| rf\left( x+r\omega \right) d\omega +r^{2}\partial _{r}f\left( x+r\omega \right) \right| \,d\omega dr\nonumber \\\lesssim & {} \left\| \nabla f\right\| _{L_{x}^{1}} \end{aligned}$$
(A.9)

where in the last inequality, we applied integration by parts in r in the first term of the RHS of the first line.

Therefore,

$$\begin{aligned} \left\| t\cos \left( t\sqrt{-\Delta }\right) f\right\| _{L_{x}^{\infty }L_{t}^{1}}\lesssim \left\| \nabla f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.10)

Hence

$$\begin{aligned} \left\| \int _{t}^{\infty }\cos \left( s\sqrt{-\Delta }\right) f\,ds\right\| _{L_{x}^{\infty }}\lesssim \frac{1}{\left| t\right| }\left\| \nabla f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.11)

Finally, we check

$$\begin{aligned} \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f=\int _{t}^{\infty }\cos \left( s\sqrt{-\Delta }\right) f\,ds, \end{aligned}$$
(A.12)

and

$$\begin{aligned} \cos \left( t\sqrt{-\Delta }\right) g=\int _{t}^{\infty }\sqrt{-\Delta }\sin \left( s\sqrt{-\Delta }\right) g\,ds. \end{aligned}$$
(A.13)

It suffices to show expressions hold for tast functions. Let \(f,\,g,\,h\) be any test functions. Define

$$\begin{aligned} Ag=\cos \left( t\sqrt{-\Delta }\right) g-\int _{t}^{\infty }\sqrt{-\Delta }\sin \left( s\sqrt{-\Delta }\right) g\,ds \end{aligned}$$
(A.14)

and

$$\begin{aligned} Bf=\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f-\int _{t}^{\infty }\cos \left( s\sqrt{-\Delta }\right) f\,ds. \end{aligned}$$
(A.15)

It is easy to check that \(A,\,B\) are independent of t by taking the time derivative of the above expressions.

To see \(A=B=0\), for A, one observes that

$$\begin{aligned} \left\langle \cos \left( t\sqrt{-\Delta }\right) g,\,h\right\rangle \rightarrow 0 \end{aligned}$$
(A.16)

and

$$\begin{aligned} \left\| \int _{t}^{\infty }\frac{\sin \left( s\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\,ds\right\| _{L_{x}^{\infty }}\lesssim \frac{1}{\left| t\right| }\left\| f\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.17)

Therefore,

$$\begin{aligned} \left\langle Ag,\,h\right\rangle \rightarrow 0,\quad t\rightarrow \infty . \end{aligned}$$
(A.18)

Since A is independent of t, one concludes that

$$\begin{aligned} \left\langle Ag,\,h\right\rangle =0 \end{aligned}$$
(A.19)

for any pair of test functions and hence

$$\begin{aligned} A=0. \end{aligned}$$
(A.20)

Similarly, we get

$$\begin{aligned} B=0. \end{aligned}$$
(A.21)

Therefore by our calculations above, we can obtain the dispersive estimates for the free wave equation,

$$\begin{aligned} \left\| \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\right\| _{L_{x}^{\infty }}= & {} \left\| \int _{t}^{\infty }\cos \left( s\sqrt{-\Delta }\right) f\,ds\right\| _{L_{x}^{\infty }}\nonumber \\\lesssim & {} \frac{1}{\left| t\right| }\left\| \nabla f\right\| _{L_{x}^{1}}, \end{aligned}$$
(A.22)

and

$$\begin{aligned} \left\| \cos \left( t\sqrt{-\Delta }\right) g\right\| _{L_{x}^{\infty }}= & {} \left\| \int _{t}^{\infty }\sqrt{-\Delta }\sin \left( s\sqrt{-\Delta }\right) g\,ds\right\| _{L_{x}^{\infty }}\nonumber \\\lesssim & {} \frac{1}{\left| t\right| }\left\| \Delta g\right\| _{L_{x}^{1}}. \end{aligned}$$
(A.23)

The theorem is proved. \(\quad \square \)

Appendix B: Local Energy Decay

We derive the local energy decay estimate for the free wave equation by the Fourier method.

Recall the coarea formula: for a a real-valued Lipschitz function u and a \(L^{1}\) function g then

$$\begin{aligned} \int _{{\mathbb {R}}^{n}}g(x)\left| \nabla u(x)\right| dx=\int _{{\mathbb {R}}}\int _{\left\{ u(x)=t\right\} }g(x)\,d\sigma (x)dt, \end{aligned}$$
(B.1)

where \(\sigma \) is the surface measure.

Lemma B.1

For \(F\in C_{0}^{\infty }\), \(\phi \) smooth and non-degenerate,i.e. \(\left| \nabla \phi (x)\right| \ne 0\), one has

$$\begin{aligned} \int _{{\mathbb {R}}}\int _{{\mathbb {R}}^{n}}e^{i\lambda \phi (x)}F(x)\,dxd\lambda =\left( 2\pi \right) ^{n}\int _{\left\{ \phi =0\right\} }\frac{F(x)}{\left| \nabla \phi (x)\right| }\,d\sigma (x). \end{aligned}$$
(B.2)

Proof

From (B.1),

$$\begin{aligned} \int _{{\mathbb {R}}}\int _{{\mathbb {R}}^{n}}e^{i\lambda \phi (x)}F(x)\,dxd\lambda =\int _{{\mathbb {R}}}\int _{{\mathbb {R}}}e^{i\lambda y}\int _{\left\{ \phi =y\right\} }\frac{F(x)}{\left| \nabla \phi (x)\right| }\,d\sigma (x)dyd\lambda . \end{aligned}$$
(B.3)

Denote \(\int _{\left\{ \phi =y\right\} }\frac{F(x)}{\left| \nabla \phi (x)\right| }\,d\sigma (x)=g(y)\), then

$$\begin{aligned} \int _{{\mathbb {R}}}\int _{{\mathbb {R}}^{n}}e^{i\lambda \phi (x)}F(x)\,dxd\lambda= & {} \int _{{\mathbb {R}}}\int _{{\mathbb {R}}}e^{i\lambda y}g(y)\,dyd\lambda \nonumber \\= & {} \left( 2\pi \right) ^{\frac{n}{2}}\int _{{\mathbb {R}}}{\hat{g}}(\lambda )\,d\lambda \nonumber \\= & {} \left( 2\pi \right) ^{n}g(0)\nonumber \\= & {} \int _{\left\{ \phi =0\right\} }\frac{F(x)}{\left| \nabla \phi (x)\right| }\,d\sigma (x). \end{aligned}$$
(B.4)

We are done. \(\quad \square \)

It suffices to consider the half wave evolution,

$$\begin{aligned} e^{it\sqrt{-\Delta }}f. \end{aligned}$$
(B.5)

Theorem B.2

(Local energy decay). Let \(\chi \ge 0\) be a smooth cut-off function such that \({\hat{\chi }}\) has compact support. Then

$$\begin{aligned} \left\| \chi (x)e^{it\sqrt{-\Delta }}f\right\| _{L_{t,x}^{2}}\lesssim \left\| f\right\| _{L_{x}^{2}}. \end{aligned}$$
(B.6)

Proof

Consider

$$\begin{aligned}&\int _{{\mathbb {R}}}\int _{{\mathbb {R}}^{n}}\left| e^{it\sqrt{-\Delta }}f\right| ^{2}(x)\chi (x)\,dxdt\nonumber \\&\quad = \int _{{\mathbb {R}}}\left\langle e^{it\sqrt{-\Delta }}f,\chi (x)e^{it\sqrt{-\Delta }}f\right\rangle _{L^{2}}dt\nonumber \\&\quad = \int _{{\mathbb {R}}}\left\langle e^{it\left| \xi \right| }{\hat{f}}\left( \xi \right) ,\left[ e^{it\left| \xi \right| }{\hat{f}}\left( \xi \right) \right] *{\hat{\chi }}\left( \xi \right) \right\rangle _{L^{2}}dt\nonumber \\&= \quad \int _{{\mathbb {R}}}\int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}e^{it\left( \left| \xi \right| -\left| \eta \right| \right) }{\hat{\chi }}\left( \xi -\eta \right) {\hat{f}}\left( \xi \right) {\hat{f}}\left( \eta \right) \,d\eta d\xi dt. \end{aligned}$$
(B.7)

Applying Lemma B.1 with \(\phi \left( \xi ,\eta \right) =\left| \xi \right| -\left| \eta \right| \), the surface \(\left\{ \phi =0\right\} \) becomes \(\left\{ \left| \xi \right| =\left| \eta \right| \right\} \) and \(\left| \nabla \phi \right| =\sqrt{2}\). It follows that

$$\begin{aligned} \int _{{\mathbb {R}}}\int _{{\mathbb {R}}^{n}}\left| e^{it\sqrt{-\Delta }}f\right| ^{2}(x)\chi (x)\,dxdt\simeq & {} \int _{\left| \xi \right| =\left| \eta \right| }{\hat{\chi }}\left( \xi -\eta \right) {\hat{f}}\left( \xi \right) {\hat{f}}\left( \eta \right) \,d\sigma \nonumber \\\lesssim & {} \int _{\left| \xi \right| =\left| \eta \right| }\left| {\hat{\chi }}\left( \xi -\eta \right) \right| \left[ \left| {\hat{f}}\left( \xi \right) \right| ^{2}+\left| {\hat{f}}\left( \eta \right) \right| ^{2}\right] \,d\sigma \nonumber \\\lesssim & {} \int _{{\mathbb {R}}^{n}}\left| {\hat{f}}\left( \xi \right) \right| ^{2}\int _{\left| \xi \right| =\left| \eta \right| }\left| {\hat{\chi }}\left( \xi -\eta \right) \right| \,d\sigma d\xi \nonumber \\\lesssim & {} \sup _{\xi }\left| K\left( \xi \right) \right| \int _{{\mathbb {R}}^{n}}\left| {\hat{f}}\left( \xi \right) \right| ^{2}d\xi \nonumber \\\lesssim & {} \int _{{\mathbb {R}}^{n}}\left| f(x)\right| ^{2}dx. \end{aligned}$$
(B.8)

It reduces to show that

$$\begin{aligned} K(\xi )=\int _{\left| \xi \right| =\left| \eta \right| }\left| {\hat{\chi }}\left( \xi -\eta \right) \right| \,d\sigma \end{aligned}$$
(B.9)

is bounded uniformly in \(\xi \). Since \({\hat{\chi }}\left( \xi \right) \) decays fast, we have

$$\begin{aligned} \left| {\hat{\chi }}(\xi )\right| \lesssim \left\langle \xi \right\rangle ^{-N} \end{aligned}$$

and

$$\begin{aligned} \left| {\hat{\chi }}\left( \xi \right) \right| \lesssim \left| \xi \right| ^{1-\epsilon -n}, \end{aligned}$$

where as usual, \(\left\langle \xi \right\rangle =\left( 1+\left| \xi \right| ^{2}\right) ^{\frac{1}{2}}\).

Note that

$$\begin{aligned} K(\xi )= & {} \int _{\left| \xi \right| =\left| \eta \right| }\left| {\hat{\chi }}\left( \xi -\eta \right) \right| \,d\sigma \nonumber \\= & {} \int _{\left| \zeta -\xi \right| =\left| \xi \right| }\left| {\hat{\chi }}\left( \zeta \right) \right| \,d\sigma \nonumber \\\lesssim & {} \int _{\left| \zeta -\xi \right| =\left| \xi \right| ,\left| \zeta \right| <1}\left| {\hat{\chi }}\left( \zeta \right) \right| \,d\sigma \nonumber \\&+\int _{\left| \zeta -\xi \right| =\left| \xi \right| ,\left| \zeta \right| >1}\left| {\hat{\chi }}\left( \zeta \right) \right| \,d\sigma \nonumber \\\lesssim & {} C(n) \end{aligned}$$
(B.10)

which is uniformly bounded in \(\xi \) and only depends on n.

Therefore, we can conclude

$$\begin{aligned} \left\| \chi (x)e^{it\sqrt{-\Delta }}f\right\| _{L_{t,x}^{2}}\lesssim \left\| f\right\| _{L_{x}^{2}}. \end{aligned}$$
(B.11)

We are done. \(\quad \square \)

With dyadic decomposition and weights, one has a global version of the result above:

Corollary B.3

\(\forall \epsilon >0\), one has

$$\begin{aligned} \left\| \left( 1+\left| x\right| \right) ^{-\frac{1}{2}-\epsilon }e^{it\sqrt{-\Delta }}f\right\| _{L_{t,x}^{2}}\lesssim _{\epsilon }\left\| f\right\| _{L_{x}^{2}}. \end{aligned}$$
(B.12)

Proof

Let \(\chi (x)\) from Theorem B.2 be a smooth version of \(1_{B_{1}(0)}\), the indicator function of the unit ball. It follows that

$$\begin{aligned}&\left\| \chi \left( 2^{-j}x\right) e^{it\sqrt{-\Delta }}f\right\| _{L_{t,x}^{2}}\nonumber \\&\quad =2^{\frac{jn}{2}}2^{\frac{j}{2}}\left\| \chi \left( x\right) \left( e^{it\sqrt{-\Delta }}f\right) \left( 2^{j}t,2^{j}x\right) \right\| _{L_{t,x}^{2}}\nonumber \\&\quad =2^{\frac{jn}{2}}2^{\frac{j}{2}}\left\| \chi \left( x\right) \left( e^{it\sqrt{-\Delta }}f\left( 2^{j}\cdot \right) \right) \right\| _{L_{t,x}^{2}}\nonumber \\&\quad \lesssim 2^{\frac{jn}{2}}2^{\frac{j}{2}}\left\| f\left( 2^{j}\cdot \right) \right\| _{L_{x}^{2}}\nonumber \\&\quad \lesssim 2^{\frac{j}{2}}\left\| f\right\| _{L_{x}^{2}}. \end{aligned}$$
(B.13)

Notice that

$$\begin{aligned} \left( 1+\left| x\right| \right) ^{-\frac{1}{2}-\epsilon }\simeq \sum _{j\ge 0}2^{-j\left( \frac{1}{2}+\epsilon \right) }\chi \left( 2^{-j}x\right) \end{aligned}$$
(B.14)

then with our computations above, we can conclude that

$$\begin{aligned} \left\| \sum _{j\ge 0}2^{-j\left( \frac{1}{2}+\epsilon \right) }\chi \left( 2^{-j}x\right) e^{it\sqrt{-\Delta }}f\right\| _{L_{t,x}^{2}}\lesssim _{\epsilon }\left\| f\right\| _{L_{x}^{2}}, \end{aligned}$$
(B.15)

and hence

$$\begin{aligned} \left\| \left( 1+\left| x\right| \right) ^{-\frac{1}{2}-\epsilon }e^{it\sqrt{-\Delta }}f\right\| _{L_{t,x}^{2}}\lesssim _{\epsilon }\left\| f\right\| _{L_{x}^{2}}. \end{aligned}$$
(B.16)

The corollary is proved. \(\quad \square \)

Appendix C: Global Existence

In this appendix, we discuss the global existence of solutions to the wave equation with time-dependent potentials. Lorentz transformations are important tools in our analysis. Lorentz transformations are rotations of space-time, therefore, a priori, one needs to show the global existence of solutions to wave equations with time-dependent potentials.

Theorem C.1

Assume \(V(x,t)\in L_{t,x}^{\infty }\). Then for each \(\left( g,\,f\right) \in H^{1}\left( {\mathbb {R}}^{3}\right) \times L^{2}\left( {\mathbb {R}}^{3}\right) ,\) there is a unique solution \(\left( u,\,u_{t}\right) \in C\left( {\mathbb {R}},\,H^{1}\left( {\mathbb {R}}^{3}\right) \right) \times C\left( {\mathbb {R}},\,L^{2}\left( {\mathbb {R}}^{3}\right) \right) \) to

$$\begin{aligned} \partial _{tt}u-\Delta u+V(x,t)u=0 \end{aligned}$$
(C.1)

with initial data

$$\begin{aligned} u(x,0)=g,\quad \partial _{t}u(x,0)=f. \end{aligned}$$
(C.2)

Proof

By Duhamel’s formula, we might write the solution as

$$\begin{aligned} u=\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f+\cos \left( t\sqrt{-\Delta }\right) g+\int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)u(s)\,ds.\nonumber \\ \end{aligned}$$
(C.3)

Starting from the local existence, we try to construct the solution in

$$\begin{aligned} X=C\left( [0,\,T],\,H^{1}\left( {\mathbb {R}}^{3}\right) \right) \times C\left( [0,\,T),\,L^{2}\left( {\mathbb {R}}^{3}\right) \right) \end{aligned}$$
(C.4)

with \(T\le 1\). One can view u as the fixed-point of the map

$$\begin{aligned} S(h)(t)=\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f+\cos \left( t\sqrt{-\Delta }\right) g+\int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)h(s)\,ds.\nonumber \\ \end{aligned}$$
(C.5)

Let

$$\begin{aligned} R=2\left\| \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f+\cos \left( t\sqrt{-\Delta }\right) g\right\| _{X}. \end{aligned}$$
(C.6)

We will show when T is small enough, S will be a contraction map in \(B_{X}(0,R)\).

Clearly,

$$\begin{aligned} \left\| S(h)(t)\right\| _{X}\le & {} \left\| \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f+\cos \left( t\sqrt{-\Delta }\right) g\right\| _{X}\nonumber \\&+\,\left\| \int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)h(s)\,ds\right\| _{X}. \end{aligned}$$
(C.7)

By direct calculations,

$$\begin{aligned} \left\| \int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)h(s)\,ds\right\| _{L_{x}^{2}}\le & {} T^{2}\left\| V\left( \cdot ,t\right) h(t)\right\| _{L^{2}}, \end{aligned}$$
(C.8)
$$\begin{aligned} \left\| \int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)h(s)\,ds\right\| _{{\dot{H}}_{x}^{1}}\le & {} T\left\| V\left( \cdot ,t\right) h(t)\right\| _{L^{2}}, \end{aligned}$$
(C.9)

and

$$\begin{aligned} \left\| \partial _{t}\left( \int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)h(s)\,ds\right) \right\| _{L_{x}^{2}}\le T\left\| V\left( \cdot ,t\right) h(t)\right\| _{L^{2}}.\nonumber \\ \end{aligned}$$
(C.10)

Therefore, we can pick \(T\left\| V\right\| _{L_{t,x}^{\infty }}<\frac{1}{10}\), we have

$$\begin{aligned} \left\| S(h)(t)\right\| _{X}\le \left\| \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f+\cos \left( t\sqrt{-\Delta }\right) g\right\| _{X}+\frac{1}{2}\left\| h\right\| _{X}. \end{aligned}$$
(C.11)

Hence, S maps \(B_{X}\left( 0,R\right) \) into itself.

Next we show S is a contraction. The calculations are straightforward.

$$\begin{aligned} \left\| S(h_{1}-h_{2})(t)\right\| _{X}\le \left\| \int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)\left( h_{1}(s)-h_{2}(s)\right) \,ds\right\| _{X}.\nonumber \\ \end{aligned}$$
(C.12)

The the same arguments as above give

$$\begin{aligned} \left\| S(h_{1}-h_{2})(t)\right\| _{X}\le \frac{1}{2}\left\| (h_{1}-h_{2})(t)\right\| _{X}. \end{aligned}$$
(C.13)

Therefore, by fixed point theorem, there is \(u\in X\) such that

$$\begin{aligned} u=S(u), \end{aligned}$$
(C.14)

in other words, there exist \(u\in C\left( [0,\,T],\,H^{1}\left( {\mathbb {R}}^{3}\right) \right) \times C\left( [0,\,T),\,L^{2}\left( {\mathbb {R}}^{3}\right) \right) \) such that

$$\begin{aligned} u=\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f+\cos \left( t\sqrt{-\Delta }\right) g+\int _{0}^{t}\frac{\sin \left( \left( t-s\right) \sqrt{-\Delta }\right) }{\sqrt{-\Delta }}V(\cdot ,s)u(s)\,ds.\nonumber \\ \end{aligned}$$
(C.15)

We notice that the choice of T is independent of the size of the initial data. Then we can repeat the argument above with \(\left( u(T),\partial _{t}u(T)\right) \) as initial condition to construct the solution from T to 2T. Iterating this process, one can easily construct the solution \(\left( u,\,u_{t}\right) \in C\left( {\mathbb {R}},\,H^{1}\left( {\mathbb {R}}^{3}\right) \right) \times C\left( {\mathbb {R}},\,L^{2}\left( {\mathbb {R}}^{3}\right) \right) \).

Finally, we notice the uniqueness of the solution follows from Grönwall’s inequality. Suppose one has two solutions \(u_{1}\) and \(u_{2}\) to our equation with the same data, then

$$\begin{aligned} \left\| u_{1}-u_{2}\right\| _{H^{1}\times L^{2}}(t)\le \int _{0}^{t}\left( t-s\right) \left\| u_{1}-u_{2}\right\| (s)\,ds. \end{aligned}$$
(C.16)

Applying Grönwall’s inequality over [0, T], we obtain

$$\begin{aligned} \left\| u_{1}-u_{2}\right\| _{X}=0, \end{aligned}$$
(C.17)

which means \(u_{1}\equiv u_{2}\) on [0, T]. Then by the same iteration argument as above, we can conclude that in \(C\left( {\mathbb {R}},\,H^{1}\left( {\mathbb {R}}^{3}\right) \right) \times C\left( {\mathbb {R}},\,L^{2}\left( {\mathbb {R}}^{3}\right) \right) \)

$$\begin{aligned} u_{1}\equiv u_{2}. \end{aligned}$$
(C.18)

Therefore, one obtains the uniqueness.

The theorem is proved. \(\quad \square \)

In our setting, \(V(x,t)=V\left( x-\vec {v}(t)\right) \) satisfies the assumption of Theorem C.1, therefore we have the global existence and uniqueness.

Corollary C.2

For each \(\left( g,\,f\right) \in H^{1}\left( {\mathbb {R}}^{3}\right) \times L^{2}\left( {\mathbb {R}}^{3}\right) ,\) there is a unique global solution \(\left( u,\,u_{t}\right) \in C\left( {\mathbb {R}},\,H^{1}\left( {\mathbb {R}}^{3}\right) \right) \times C\left( {\mathbb {R}},\,L^{2}\left( {\mathbb {R}}^{3}\right) \right) \) to the wave equation

$$\begin{aligned} \partial _{tt}u-\Delta u+V\left( x-\vec {v}(t)\right) u=0 \end{aligned}$$
(C.19)

with initial data

$$\begin{aligned} u(x,0)=g,\,\partial _{t}u(x,0)=f. \end{aligned}$$
(C.20)

Remark

The theorem above also applies to the charge transfer model in [GC2]:

$$\begin{aligned} \partial _{tt}u-\Delta u+\sum _{i=1}^{m}\sum _{j=1}^{m}V_{v_{j}}\left( x-\vec {v}_{j}t\right) u=0. \end{aligned}$$

Appendix D: Revered Strichartz Estimates

In this appendix, we present an alternative approach to the homogeneous endpoint reversed Strichartz estimates based on the Fourier transformation.

We only consider \(\frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f=\frac{1}{2}\frac{e^{it\sqrt{-\Delta }}}{\sqrt{-\Delta }}f-\frac{1}{2}\frac{e^{-it\sqrt{-\Delta }}}{\sqrt{-\Delta }}f\). We can further reduce to consider

$$\begin{aligned} \frac{e^{it\sqrt{-\Delta }}}{\sqrt{-\Delta }}f. \end{aligned}$$
(D.1)

With Fourier transform and polar coordinates \(\xi =\lambda \omega \), we have

$$\begin{aligned} \frac{e^{it\sqrt{-\Delta }}}{\sqrt{-\Delta }}f= & {} \int _{0}^{\infty }\int _{{\mathbb {S}}^{2}}\frac{e^{2\pi it\lambda }}{\lambda }e^{2\pi i\lambda \left( \omega \cdot x\right) }\lambda ^{2}{\hat{f}}\left( \lambda \omega \right) d\omega d\lambda \nonumber \\= & {} \int _{{\mathbb {R}}}e^{2\pi it\lambda }\left( \chi _{[0,\infty )}(\lambda )\int _{{\mathbb {S}}^{2}}e^{2\pi i\lambda \left( \omega \cdot x\right) }\lambda {\hat{f}}\left( \lambda \omega \right) d\omega \right) d\lambda \nonumber \\= & {} \int _{{\mathbb {R}}}e^{2\pi it\lambda }G(x,\lambda )d\lambda \end{aligned}$$
(D.2)

where

$$\begin{aligned} G(x,\lambda )=\chi _{[0,\infty )}(\lambda )\int _{{\mathbb {S}}^{2}}e^{2\pi i\lambda \left( \omega \cdot x\right) }\lambda {\hat{f}}\left( \lambda \omega \right) d\omega . \end{aligned}$$
(D.3)

By Plancherel’s Theorem, we know for fixed x,

$$\begin{aligned} \left\| \frac{e^{it\sqrt{-\Delta }}}{\sqrt{-\Delta }}f\right\| _{L_{t}^{2}}= & {} \left\| G(x,\lambda )\right\| _{L_{\lambda }^{2}}. \end{aligned}$$
(D.4)
$$\begin{aligned} G^{2}(x,\lambda )= & {} \left( \chi _{[0,\infty )}(\lambda )\int _{{\mathbb {S}}^{2}}e^{2\pi i\lambda \left( \omega \cdot x\right) }\lambda {\hat{f}}\left( \lambda \omega \right) d\omega \right) ^{2}\nonumber \\\lesssim & {} \chi _{[0,\infty )}(\lambda )\int _{{\mathbb {S}}^{2}}\lambda ^{2}\left| {\hat{f}}\left( \lambda \omega \right) \right| ^{2}d\omega \end{aligned}$$
(D.5)
$$\begin{aligned} \left\| \frac{e^{it\sqrt{-\Delta }}}{\sqrt{-\Delta }}f\right\| _{L_{t}^{2}}^{2}\lesssim & {} \int _{0}^{\infty }\int _{{\mathbb {S}}^{2}}\lambda ^{2}\left| {\hat{f}}\left( \lambda \omega \right) \right| ^{2}d\omega d\lambda \nonumber \\\lesssim & {} \int \left| {\hat{f}}\left( \xi \right) \right| ^{2}d\xi \nonumber \\= & {} \int \left| f\left( x\right) \right| ^{2}dx. \end{aligned}$$
(D.6)

Therefore,

$$\begin{aligned} \left\| \frac{\sin \left( t\sqrt{-\Delta }\right) }{\sqrt{-\Delta }}f\right\| _{L_{x}^{\infty }L_{t}^{2}}\lesssim \left\| f\right\| _{L^{2}} \end{aligned}$$
(D.7)

as desired.

Remark

The two dimension version was obtained in [Oh] and is mentioned in [B]:

$$\begin{aligned} \left\| e^{it\sqrt{-\Delta }}f\right\| _{L_{x}^{\infty }L_{t}^{2}}\lesssim \left\| f\right\| _{{\dot{B}}_{2,1}^{1/2}}. \end{aligned}$$
(D.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Wave Equations with Moving Potentials. Commun. Math. Phys. 375, 1503–1560 (2020). https://doi.org/10.1007/s00220-019-03602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03602-5

Navigation