Skip to main content

Vanishing Viscosity Limit to the Planar Rarefaction Wave for the Two-Dimensional Compressible Navier–Stokes Equations

Abstract

The vanishing viscosity limit of the two-dimensional (2D) compressible and isentropic Navier–Stokes equations is studied in the case that the corresponding 2D inviscid Euler equations admit a planar rarefaction wave solution. It is proved that there exists a family of smooth solutions for the 2D compressible Navier–Stokes equations converging to the planar rarefaction wave solution with arbitrary strength for the 2D Euler equations. A uniform convergence rate is obtained in terms of the viscosity coefficients away from the initial time. In the proof, the hyperbolic wave is crucially introduced to recover the physical viscosities of the inviscid rarefaction wave profile, in order to rigorously justify the vanishing viscosity limit.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bardos, C., Titi, E., Wiedemann, E.: Onsager’s conjecture with physical boundaries and an application to the viscosity limit. Commun. Math. Phys. 370, 291–310 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 2(161), 223–342 (2005)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Brezina, J., Chiodaroli, E., Kreml, O.: Contact discontinuities in multi-dimensional isentropic Euler equations. Electron. J. Differ. Equ. 94, 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Chen, G.-Q., Chen, J.: Stability of rarefaction waves and vacuum states for the multidimensional Euler equations. J. Hyperbolic Differ. Equ. 4(1), 105–122 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chen, G.-Q., Glimm, J.: Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier–Stokes equations in \({{\mathbb{R}}}^3\). arXiv:1809.09490 [math.AP] (2018)

  6. 6.

    Chen, G.-Q., Li, S., Qian, Z.: The inviscid limit of the Navier–Stokes equations with kinematic and Navier boundary conditions. arXiv:1812.06565 [math.AP] (2018)

  7. 7.

    Chen, G.-Q., Perepelitsa, M.: Vanishing viscosity limit of the Navier–Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63, 1469–1504 (2010)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chiodaroli, E., Kreml, O.: Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations. Nonlinearity 31, 1441–1460 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Constantin, P., Elgindi, T., Ignatova, M., Vicol, V.: Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields. SIAM J. Math. Anal. 49, 1932–1946 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    De Lellis, C., Szekelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Drivas, T.D., Nguyen, H.Q.: Remarks on the emergence of weak Euler solutions in the vanishing viscosity limit. J. Nonlinear Sci. 29, 709–721 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Feireisl, E., Kreml, O.: Uniqueness of rarefaction waves in multidimensional compressible Euler system. J. Hyperbolic Differ. Equ. 12(3), 489–499 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Feireisl, E., Kreml, O., Vasseur, A.: Stability of the isentropic Riemann solutions of the full multidimensional Euler system. SIAM J. Math. Anal. 47(3), 2416–2425 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Goodman, J., Xin, Z.-P.: Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Ration. Mech. Anal. 121, 235–265 (1992)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Hoff, D., Liu, T.P.: The inviscid limit for the Navier–Stokes equations of compressible, isentropic flow with shock data. Indiana Univ. Math. J. 38, 861–915 (1989)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Huang, F.M., Li, M.J., Wang, Y.: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 44, 1742–1759 (2012)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Huang, F.M., Li, X.: Zero dissipation limit to rarefaction wave for the 1-D compressible Navier–Stokes equations. Chin. Ann. Math. 33, 385–394 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Huang, F.M., Wang, Y., Yang, T.: Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinet. Relat. Models 3, 685–728 (2010)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Huang, F.M., Wang, Y., Yang, T.: Vanishing viscosity limit of the compressible Navier–Stokes equations for solutions to a Riemann problem. Arch. Ration. Mech. Anal. 203, 379–413 (2012)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Huang, F.M., Wang, Y., Wang, Y., Yang, T.: The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J. Math. Anal. 45, 1741–1811 (2013)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Jiang, S., Ni, G.X., Sun, W.J.: Vanishing viscosity limit to rarefaction waves for the Navier–Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J. Math. Anal. 38, 368–384 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kato, T.: Remarks on zero viscosity limit for non-stationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, 1983), vol. 2, Mathematical Sciences Research Institute Publications, pp. 85–98. Springer, New York (1984)

  24. 24.

    Lax, P.D.: Hyperbolic systems of conservation laws, II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Li, L.-A., Wang, T., Wang, Y.: Stability of planar rarefaction wave to 3D full compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 230, 911–937 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Li, L.-A., Wang, Y.: Stability of the planar rarefaction wave to the two-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 50, 4937–4963 (2018)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Li, M., Wang, T.: Zero dissipation limit to rarefaction wave with vacuum for one-dimensional full compressible Navier–Stokes equations. Commun. Math. Sci. 12, 1135–1154 (2014)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Li, M., Wang, T., Wang, Y.: The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients. Anal. Appl. (Singap.) 13, 555–589 (2015)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Ma, S.: Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier–Stokes equations. J. Differ. Equ. 248, 95–110 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Markfelder, S., Klingenberg, C.: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. Arch. Ration. Mech. Anal. 227, 967–994 (2018)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Masmoudi, N.: Remarks about the inviscid limit of the Navier–Stokes system. Commun. Math. Phys. 270, 777–788 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Solonnikov, V.A.: On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid. In: Studies on Linear Operators and Function Theory, pp. 128–142. vol. 6 [in Russain], Nauka, Leningrad (1976)

  33. 33.

    Wang, H.Y.: Viscous limits for piecewise smooth solutions of the p-system. J. Math. Anal. Appl. 299, 411–432 (2004)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Wang, Y.: Zero dissipation limit of the compressible heat-conducting Navier–Stokes equations in the presence of the shock. Acta Math. Sci. Ser. B. 28, 727–748 (2008)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Xin, Z.-P.: Zero dissipation limit to rarefaction waves for the one-dimensional Navier–Stokes equations of compressible isentropic gases. Commun. Pure Appl. Math. 46, 621–665 (1993)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Xin, Z.-P., Zeng, H.-H.: Convergence to rarefaction waves for the nonlinear Boltzmann equation and compressible Navier–Stokes equations. J. Differ. Equ. 249, 827–871 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Yu, S.-H.: Zero-dissipation limit of solutions with shocks for systems of conservation laws. Arch. Ration. Mech. Anal. 146, 275–370 (1999)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The research of D. Wang is partially supported by the National Science Foundation under Grants DMS-1312800 and DMS-1613213. Y. Wang is supported by NSFC Grant Nos. 11671385 and 11688101 and CAS Interdisciplinary Innovation Team. The authors would like to thank the anonymous referee for the valuable suggestions which improved the presentation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dehua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by C. De Lellis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, LA., Wang, D. & Wang, Y. Vanishing Viscosity Limit to the Planar Rarefaction Wave for the Two-Dimensional Compressible Navier–Stokes Equations. Commun. Math. Phys. 376, 353–384 (2020). https://doi.org/10.1007/s00220-019-03580-8

Download citation