Aubry, S., Abramovici, G.: Chaotic trajectories in the standard map. The concept of anti-integrability. Physica D 43(2–3), 199–219 (1990)
ADS
MathSciNet
Article
Google Scholar
Aliste-Prieto, J., Coronel, D., Cortez, M.I., Durand, F., Petite, S.: Linearly Repetitive Delone Sets, Mathematics of Aperiodic Order. Progress in Mathematics, vol. 309, pp. 195–222. Birkhäuser, Basel (2015)
Book
Google Scholar
Baake, M., Grimm, U.: Aperiodic Order. Encyclopedia of Mathematics and Its Applications. A Mathematical Invitation, with a Foreword by Roger Penrose, vol. 149, vol. 1. Cambridge University Press, Cambridge (2013)
Book
Google Scholar
Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model. Concepts, Methods, and Applications. Texts and Monographs in Physics. Springer, Berlin (2004)
Book
Google Scholar
Bolotin, S.V., Treshchëv, D.V.: Anti-integrable limit. Uspekhi Mat. Nauk 70(6), 3–62 (2015)
MathSciNet
Article
Google Scholar
Candel, A., de la Llave, R.: On the Aubry–Mather theory in statistical mechanics. Commun. Math. Phys. 192(3), 649–669 (1998)
ADS
MathSciNet
Article
Google Scholar
de la Llave, R.: A tutorial on KAM theory, Smooth Ergodic theory and its applications (Seattle, WA, 1999). In: Proceedings of Symposia in Pure Mathematics, vol. 69, pp. 175–292. American Mathematical Society, Providence, RI (2001)
de la Llave, R., Valdinoci, E.: Ground states and critical points for Aubry–Mather theory in statistical mechanics. J. Nonlinear Sci. 20(2), 153–218 (2010)
ADS
MathSciNet
Article
Google Scholar
Dworkin, S.: Spectral theory and X-ray diffraction. J. Math. Phys. 34(7), 2965–2967 (1993)
ADS
MathSciNet
Article
Google Scholar
Frenkel, J., Kontorova, T.: On the theory of plastic deformation and twinning. Acad. Sci. U.S.S.R. J. Phys. 1, 137–149 (1939)
MathSciNet
MATH
Google Scholar
Gambaudo, J.-M., Guiraud, P., Petite, S.: Minimal configurations for the Frenkel–Kontorova model on a quasicrystal. Commu. Math. Phys. 265(1), 165–188 (2006)
ADS
MathSciNet
Article
Google Scholar
Golé, C.: Symplectic Twist Maps: Global Variational Techniques. Advanced Series in Nonlinear Dynamics, vol. 18. World Scientific Publishing Co., Inc., River Edge, NJ (2001)
Book
Google Scholar
Garibaldi, E., Petite, S., Thieullen, P.: Calibrated configurations for Frenkel–Kontorova type models in almost periodic environments. Ann. Henri Poincaré 18(9), 2905–2943 (2017)
ADS
MathSciNet
Article
Google Scholar
Kellendonk, J., Putnam, I.F.: The Ruelle–Sullivan map for actions of \({\mathbb{R}}^n\). Math. Ann. 334(3), 693–711 (2006)
Google Scholar
Lagarias, J.C.: Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21(2), 161–191 (1999)
MathSciNet
Article
Google Scholar
Lifshitz, R.: What is a crystal? Z. Kristallogr 222(6), 313–317 (2007)
Article
Google Scholar
Mather, J.N., Forni, G.: Action Minimizing Orbits in Hamiltonian Systems. Transition to Chaos in Classical and Quantum Mechanics (Montecatini Terme, 1991), Lecture Notes in Mathematics, vol. 1589, pp. 92–186. Springer, Berlin (1994)
MATH
Google Scholar
Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)
ADS
Article
Google Scholar
Schmieding, S., Treviño, R.: Self affine delone sets and deviation phenomena. Commun. Math. Phys. 357(3), 1071–1112 (2018)
ADS
MathSciNet
Article
Google Scholar
Schmieding, S., Treviño, R.: Random Substitution Tilings and Deviation Phenomena. arXiv e-prints (2019). arXiv:1902.08996
Treviño, R.: Tilings, Traces and Triangles. arXiv e-prints (2019). arXiv:1906.00466