Advertisement

Optimal Rate for Bose–Einstein Condensation in the Gross–Pitaevskii Regime

  • Chiara Boccato
  • Christian Brennecke
  • Serena Cenatiempo
  • Benjamin SchleinEmail author
Article

Abstract

We consider systems of bosons trapped in a box, in the Gross–Pitaevskii regime. We show that low-energy states exhibit complete Bose–Einstein condensation with an optimal bound on the number of orthogonal excitations. This extends recent results obtained in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018), removing the assumption of small interaction potential.

Notes

Acknowledgements

We would like to thank P. T. Nam and R. Seiringer for several useful discussions and for suggesting us to use the localization techniques from [9]. C. Boccato has received funding from the European Research Council (ERC) under the programme Horizon 2020 (Grant Agreement 694227). B. Schlein gratefully acknowledges support from the NCCR SwissMAP and from the Swiss National Foundation of Science (Grant No. 200020_1726230) through the SNF Grant “Dynamical and energetic properties of Bose–Einstein condensates”.

References

  1. 1.
    Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. 359(3), 975–1026 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: The excitation spectrum of Bose gases interacting through singular potentials (To appear on J. Eur. Math. Soc). Preprint arXiv:1704.04819
  3. 3.
    Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross–Pitaevskii limit. Acta Math. 222(2), 219–335 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk. USSR 11, 77 (1947). (Engl. Transl. J. Phys. (USSR) 11 (1947), 23)MathSciNetGoogle Scholar
  5. 5.
    Brennecke, C., Schlein, B.: Gross–Pitaevskii dynamics for Bose–Einstein condensates. Anal. PDE 12(6), 1513–1596 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose gases. Adv. Math. 254, 570–621 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc. 368(9), 6131–6157 (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264(2), 505–537 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math. Phys. 217, 127–163 (2001). (Errata: Commun. Math. Phys. 225 (2002), 219–221)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited. Anal. PDE 9(2), 459–485 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Seiringer, R.: The excitation spectrum for weakly interacting Bosons. Commun. Math. Phys. 306, 565–578 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Science and Technology AustriaKlosterneuburgAustria
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Gran Sasso Science InstituteL’AquilaItaly
  4. 4.Institute of MathematicsUniversity of ZurichZurichSwitzerland

Personalised recommendations