Skip to main content
Log in

Sharp Resolvent Estimates Outside of the Uniform Boundedness Range

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we are concerned with resolvent estimates for the Laplacian \(\Delta \) in Euclidean spaces. Uniform resolvent estimates for \(\Delta \) were shown by Kenig et al. (Duke Math J 55(2):329–347, 1987) who established rather a complete description of the Lebesgue spaces allowing such estimates. However, the problem of obtaining sharp \(L^p\)\(L^q\) bounds depending on z has not been considered in a general framework which admits all possible pq. In this paper, we present a complete picture of sharp \(L^p\)\(L^q\) resolvent estimates, which may depend on z. We also obtain the sharp resolvent estimates for the fractional Laplacians and a new result for the Bochner–Riesz operators of negative index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The midpoint of the line segment \(AA'\) in Fig. 2.

  2. Sharpness here refers to the optimal dependence of \(\Vert (-\Delta -z)^{-1}\Vert _{p\rightarrow q}\) on the spectral parameter z.

  3. \({\mathbb {S}}^1:=\{z\in {\mathbb {C}}: |z|=1\}\).

  4. \({\mathcal {P}}=[(1,0), E, B, B', E']{\setminus } ([E, B]\cup [E', B'] )\), \({\mathcal {T}}=[B, D, D', B']{\setminus } [B, B']\), and \({\mathcal {Q}}=[(0,0), D, B, E]{\setminus }([D, B]\cup [B, E])\). See Figs. 1 and 2.

  5. Here we choose the branch of \(\sqrt{z}\), \(z\in {\mathbb {C}}{\setminus }[0,\infty )\), such that the imaginary part is positive. Note that \(\Xi _\delta =\{z\in {\mathbb {C}}{\setminus }[0,\infty ): (\mathop {\mathrm {Im}}z)^2\ge 4\delta ^2(\mathop {\mathrm {Re}}z+\delta ^2) \}\). In the complex plane this region excludes a neighborhood of the origin and a parabolic region opening to the right.

  6. This is equivalent to saying that the matrix \(\partial _u^2\langle v, \partial _x\Phi \rangle \) is either positive or negative definite.

  7. When \(d=2\) this is \(1/q<1/4\). When \(d\ge 3\) this is equivalent to saying that (1 / p, 1 / q) lies strictly below the line passing through the points \(P_*\) and \(P_\circ \). See Figs. 3 and 4.

  8. For a proof of existence of such \(\phi \) we refer the reader to [30, Lemma 2.2]. Also, see [12, Lemma 2.1].

  9. If \(\gamma _{p,q}>0\) and \(\mathop {\mathrm {Re}}z\ge |\mathop {\mathrm {Im}}z|\gg 1\), then the region is roughly determined by \(|\mathop {\mathrm {Im}}z|\gtrsim (\mathop {\mathrm {Re}}z)^{\frac{\gamma _{p,q}-\omega _{p,q}}{\gamma _{p,q}}}\). Likewise, if \(\gamma _{p,q}>0\) and \(0<\mathop {\mathrm {Re}}z< |\mathop {\mathrm {Im}}z|\), \(|\mathop {\mathrm {Im}}z|\gtrsim \ell ^{-1/\omega _{p,q}} \) for \(z\in {\mathcal {Z}}_{p,q}(\ell )\).

  10. We recall from the introduction that \(\widetilde{{\mathcal {R}}}_{3,\pm }=\{(\frac{1}{p},\frac{1}{q}):\pm (\gamma _{p,q}-\omega _{p,q})<0\}\) and \(\widetilde{\mathcal R}_{3,0}=\{(\frac{1}{p},\frac{1}{q}):\gamma _{p,q}-\omega _{p,q}=0\}\).

References

  1. Bak, J.-G.: Sharp estimates for the Bochner–Riesz operator of negative order in \({{\mathbb{R}}}^2\). Proc. Am. Math. Soc. 125(7), 1977–1986 (1997)

    Google Scholar 

  2. Bak, J.-G., McMichael, D., Oberlin, D.: \(L^p\)-\(L^q\) estimates off the line of duality. J. Aust. Math. Soc. Ser. A 58(2), 154–166 (1995)

    Google Scholar 

  3. Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006)

    Google Scholar 

  4. Bourgain, J.: Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Sér. I Math. 301(10), 499–502 (1985)

    Google Scholar 

  5. Bourgain, J.: \(L^p\)-estimates for oscillatory integrals in several variables. Geom. Funct. Anal. 1(4), 321–374 (1991)

    Google Scholar 

  6. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21, 1239–1295 (2011)

    Google Scholar 

  7. Bourgain, J., Shao, P., Sogge, C.D., Yao, X.: On \(L^p\)-resolvent estimates and the density of eigenvalues for compact Riemannian manifolds. Commun. Math. Phys. 333(3), 1483–1527 (2015)

    Google Scholar 

  8. Börjeson, L.: Estimates for the Bochner–Riesz operator with negative index. Indiana Univ. Math. J. 35(2), 225–233 (1986)

    Google Scholar 

  9. Carbery, A., Seeger, A., Wainger, S., Wright, J.: Classes of singular integral operators along variable lines. J. Geom. Anal. 9(4), 583–605 (1999)

    Google Scholar 

  10. Carbery, A., Soria, F.: Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an \(L^2\)-localisation principle. Rev. Mat. Iberoam. 4(2), 319–337 (1988)

    Google Scholar 

  11. Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math. 44, 287–299 (1972)

    Google Scholar 

  12. Cho, Y., Kim, Y., Lee, S., Shim, Y.: Sharp \(L^p\)\(L^q\) estimates for Bochner–Riesz operators of negative index in \({\mathbb{R}}^n\), \(n\ge 3\). J. Funct. Anal. 218(1), 150–167 (2005)

    Google Scholar 

  13. Christ, M.: On almost everywhere convergence of Bochner–Riesz means in higher dimensions. Proc. Am. Math. Soc. 95(1), 16–20 (1985)

    Google Scholar 

  14. Cuenin, J.C.: Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials. J. Funct. Anal. 272(7), 2987–3018 (2017)

    Google Scholar 

  15. Dos Santos Ferreira, D., Kenig, C., Salo, M.: On \(L^p\) resolvent estimates for Laplace–Beltrami operators on compact manifolds. Forum Math. 26(3), 815–849 (2014)

    Google Scholar 

  16. Fefferman, C.: The multiplier problem for the ball. Ann. Math. 2(94), 330–336 (1971)

    Google Scholar 

  17. Frank, R.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

    Google Scholar 

  18. Frank, R.: Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Am. Math. Soc. 370(1), 219–240 (2018)

    Google Scholar 

  19. Frank, R., Schimmer, L.: Endpoint resolvent estimates for compact Riemannian manifolds. J. Funct. Anal. 272(9), 3904–3918 (2017)

    Google Scholar 

  20. Goldberg, M., Schlag, W.: A limiting absorption principle for the three-dimensional Schrödinger equation with \(L^p\) potentials. Int. Math. Res. Not. 75, 4049–4071 (2004)

    Google Scholar 

  21. Guth, L.: Restriction estimates using polynomial partitioning II. arXiv:1603.04250

  22. Guth, L.: A restriction estimate using polynomial partitioning. J. Am. Math. Soc. 29(2), 371–413 (2016)

    Google Scholar 

  23. Guth, L., Hickman, J., Iliopoulou, M.: Sharp estimates for oscillatory integral operators via polynomial partitioning. arXiv:1710.10349

  24. Gutiérrez, S.: A note on restricted weak-type estimates for Bochner–Riesz operators with negative index in \({{\mathbb{R}}}^n\), \(n\ge 2\). Proc. Am. Math. Soc. 128(2), 495–501 (1999)

    Google Scholar 

  25. Gutiérrez, S.: Non trivial \(L^q\) solutions to the Ginzburg–Landau equation. Math. Ann. 328(1), 1–25 (2004)

    Google Scholar 

  26. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104(1–2), 93–140 (1960)

    Google Scholar 

  27. Hörmander, L.: Oscillatory integrals and multipliers on \(FL^p\). Ark. Mat. 11(1–2), 1–11 (1973)

    Google Scholar 

  28. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990)

    Google Scholar 

  29. Huang, S., Yao, X., Zheng, Q.: Remarks on \(L^p\)-limiting absorption principle of Schrödinger operators and applications to spectral multiplier theorems. Forum Math. 30(1), 43–55 (2018)

    Google Scholar 

  30. Jeong, E., Kwon, Y., Lee, S.: Uniform Sobolev inequalities for second order non-elliptic differential operators. Adv. Math. 302, 323–350 (2016)

    Google Scholar 

  31. Kato, T., Yajima, K.: Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys. 1, 481–496 (1989)

    Google Scholar 

  32. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    Google Scholar 

  33. Kwon, Y., Lee, S.: Sharp resolvents estimates on compact manifolds, in preparation

  34. Lee, S.: Some sharp bounds for the cone multiplier of negative order in \({{\mathbb{R}}}^3\). Bull. Lond. Math. Soc. 35, 373–390 (2003)

    Google Scholar 

  35. Lee, S.: Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operators. Duke Math. 122(1), 205–232 (2004)

    Google Scholar 

  36. Lee, S.: Linear and bilinear estimates for oscillatory integral operators related to restriction to hypersurfaces. J. Funct. Anal. 241(1), 56–98 (2006)

    Google Scholar 

  37. Lee, S., Rogers, K.M., Seeger, A.: Improved bound for Stein’s square functions. Proc. Lond. Math. Soc. 3(104), 1198–1234 (2012)

    Google Scholar 

  38. Mockenhaupt, G., Seeger, A., Sogge, C.: Local smoothing of Fourier integral operators and Carleson–Sjölin estimates. J. Am. Math. Soc. 6(1), 65–130 (1993)

    Google Scholar 

  39. Olver, F.W.J., Maximon, L.C.: Bessel Functions. NIST Handbook of Mathematical Functions. U.S. Department of Commerce, Washington, DC (2010)

    Google Scholar 

  40. Ren, T., Xi, Y., Zhang, C.: An endpoint version of uniform Sobolev inequalities. Forum Math. 30(5), 1279–1289 (2018)

    Google Scholar 

  41. Shao, P., Yao, X.: Uniform Sobolev resolvent estimates for the Laplace–Beltrami operator on compact manifolds. Int. Math. Res. Not. 12, 3439–3463 (2014)

    Google Scholar 

  42. Shen, Z.: On absolute continuity of the periodic Schrödinger operators. Int. Math. Res. Not. 1, 1–31 (2001)

    Google Scholar 

  43. Sogge, C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53, 43–65 (1986)

    Google Scholar 

  44. Sogge, C.D.: Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, vol. 210, 2nd edn. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  45. Stein, E.: Oscillatory integrals in Fourier analysis. Beijing lectures in harmonic analysis (Beijing, 1984), pp. 307–355, Ann. Math. Stud. 112, Princeton University Press, Princeton, NJ (1986)

  46. Stein, E.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton, NJ (1993)

    Google Scholar 

  47. Tao, T.: The Bochner–Riesz conjecture implies the restriction conjecture. Duke Math. J. 96(2), 363–375 (1999)

    Google Scholar 

  48. Tao, T.: A sharp bilinear restriction estimate for paraboloids. Geom. Funct. Anal. 13, 1359–1384 (2003)

    Google Scholar 

  49. Tao, T., Vargas, A., Vega, L.: A bilinear approach to the restriction and Kakeya conjectures. J. Am. Math. Soc. 11(4), 967–1000 (1998)

    Google Scholar 

  50. Teschl, G.: Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators. Graduate Studies in Mathematics, vol. 157. American Mathematical Society, Providence, RI (2014)

    Google Scholar 

  51. Tomas, P.: A restriction theorem for the Fourier transform. Bull. Am. Math. Soc. 81, 477–478 (1975)

    Google Scholar 

Download references

Acknowledgements

The authors were supported by NRF-2018R1A2B2006298. We would like to thank Ihyeok Seo and Younghun Hong for discussions on related issues, and the anonymous referees for various helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehyun Kwon.

Additional information

Communicated by W. Schlag

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y., Lee, S. Sharp Resolvent Estimates Outside of the Uniform Boundedness Range. Commun. Math. Phys. 374, 1417–1467 (2020). https://doi.org/10.1007/s00220-019-03536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03536-y

Navigation