Moduli Spaces of Framed G–Higgs Bundles and Symplectic Geometry


Let X be a compact connected Riemann surface, \(D\, \subset \, X\) a reduced effective divisor, G a connected complex reductive affine algebraic group and \(H_x\, \subsetneq \, G\) a Zariski closed subgroup for every \(x\, \in \, D\). A framed principal G–bundle on X is a pair \((E_G,\, \phi )\), where \(E_G\) is a holomorphic principal G–bundle on X and \(\phi \) assigns to each \(x\, \in \, D\) a point of the quotient space \((E_G)_x/H_x\). A framed G–Higgs bundle is a framed principal G–bundle \((E_G,\, \phi )\) together with a holomorphic section \(\theta \, \in \, H^0(X,\, \text {ad}(E_G)\otimes K_X\otimes {{\mathcal {O}}}_X(D))\) such that \(\theta (x)\) is compatible with the framing \(\phi \) at x for every \(x\, \in \, D\). We construct a holomorphic symplectic structure on the moduli space \({\mathcal {M}}_{FH}(G)\) of stable framed G–Higgs bundles on X. Moreover, we prove that the natural morphism from \({\mathcal {M}}_{FH}(G)\) to the moduli space \({\mathcal {M}}_{H}(G)\) of D-twisted G–Higgs bundles \((E_G,\, \theta )\) that forgets the framing, is Poisson. These results generalize (Biswas et al. in Int Math Res Not, 2019., arXiv:1805.07265) where \((G,\, \{H_x\}_{x\in D})\) is taken to be \((\text {GL}(r,{\mathbb C}),\, \{\text {I}_{r\times r}\}_{x\in D})\). We also investigate the Hitchin system for the moduli space \({\mathcal {M}}_{FH}(G)\) and its relationship with that for \({\mathcal {M}}_{H}(G)\).

This is a preview of subscription content, access via your institution.


  1. [AOV]

    Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Annales de l’Institut Fourier 58, 1057–1091 (2008)

    MathSciNet  Article  Google Scholar 

  2. [AnBi]

    Anchouche, B., Biswas, I.: Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold. Am. J. Math. 123, 207–228 (2001)

    Article  Google Scholar 

  3. [AtBo]

    Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A 308, 523–615 (1983)

  4. [BLS]

    Beauville, A., Laszlo, Y., Sorger, C.: The Picard group of the moduli of G-bundles on a curve. Compos. Math. 112, 183–216 (1998)

    MathSciNet  Article  Google Scholar 

  5. [BG]

    Biswas, I., Gómez, T.L.: Connections and Higgs fields on a principal bundle. Ann. Glob. Anal. Geom. 33, 19–46 (2008)

    MathSciNet  Article  Google Scholar 

  6. [BR]

    Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. Lond. Math. Soc. 49, 219–231 (1994)

    MathSciNet  Article  Google Scholar 

  7. [Bi]

    Biswas, I.: A remark on a deformation theory of Green and Lazarsfeld. J. Reine Angew. Math. 449, 103–124 (1994)

    MathSciNet  MATH  Google Scholar 

  8. [BLP]

    Biswas, I., Logares, M., Peón-Nieto, A.: Symplectic geometry of a moduli space of framed Higgs bundles. Int. Math. Res. Not. (2019)., arXiv:1805.07265

  9. [Bor]

    Borel, A.: Linear Algebraic Groups, Second Edition, Graduate Texts in Mathematics, 126. Springer, New York (1991)

    Google Scholar 

  10. [Bot]

    Bottacin, F.: Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. École Norm. Sup. 28, 391–433 (1995)

    MathSciNet  Article  Google Scholar 

  11. [BSU]

    Brion, M., Samuel, P., Uma, V.: Lectures on the structure of algebraic groups and geometric applications. CMI Lecture Series in Mathematics, vol. 1. Hindustan Book Agency, Chennai (2013)

    Book  Google Scholar 

  12. [Do]

    Donin, I.F.: Construction of a versal family of deformations for holomorphic bundles over a compact complex space. Math. USSR Sb. 23, 405–416 (1974)

    Article  Google Scholar 

  13. [DG]

    Donagi, R.Y., Gaitsgory, D.: The gerbe of Higgs bundles. Transform. Groups 7, 109–153 (2001)

    MathSciNet  Article  Google Scholar 

  14. [DM]

    Donagi, R.Y., Markman, E.: Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, Integrable systems and quantum groups (Montecatini Terme, 1993), 1–119, Lecture Notes in Mathematics, 1620, Fond. CIME/CIME Found. Subser., Springer, Berlin (1996)

  15. [Hi1]

    Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    MathSciNet  Article  Google Scholar 

  16. [Hi2]

    Hitchin, N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987)

    MathSciNet  Article  Google Scholar 

  17. [Hi3]

    Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31, 449–473 (1992)

    MathSciNet  Article  Google Scholar 

  18. [Hum]

    Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)

    Book  Google Scholar 

  19. [Huy]

    Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  20. [LP]

    Lange, H., Pauly, C.: Polarizations of Prym varieties for Weyl groups via abelianization. J. Eur. Math. Soc. 11, 315–349 (2009)

    MathSciNet  Article  Google Scholar 

  21. [LM]

    Logares, M., Martens, J.: Moduli of parabolic Higgs bundles and Atiyah algebroids. J. Reine Angew. Math. 649, 89–116 (2010)

    MathSciNet  MATH  Google Scholar 

  22. [Ma]

    Markman, E.: Spectral curves and integrable systems. Compos. Math. 93, 255–290 (1994)

    MathSciNet  MATH  Google Scholar 

  23. [Ngo]

    Ngô, B.C.: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. 111, 1–169 (2010)

    Article  Google Scholar 

  24. [Ni]

    Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. 62, 275–300 (1991)

    MathSciNet  Article  Google Scholar 

  25. [Ra1]

    Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975)

    MathSciNet  Article  Google Scholar 

  26. [Ra2]

    Ramanathan, A.: Moduli of principal bundles over algebraic curves. Proc. Indian Acad. Sci. Math. Sci. 106, 301–328 (1996)

    MathSciNet  Article  Google Scholar 

  27. [RS]

    Ramanathan, A.: Subramanian: Einstein-Hermitian connections on principal bundles and stability. J. Reine Angew. Math. 390, 21–31 (1988)

    MathSciNet  MATH  Google Scholar 

  28. [Se]

    Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques, Notes written by J.-M. Dréezet, Astérisque, vol. 96. Société Mathématique de France, Paris (1982)

    Google Scholar 

  29. [Si1]

    Simpson, C.T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    MathSciNet  Article  Google Scholar 

  30. [Si2]

    Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    MathSciNet  Article  Google Scholar 

  31. [Si3]

    Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1995)

    MathSciNet  Article  Google Scholar 

  32. [St]

    Steenrod, N.: The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton (1951)

    Book  Google Scholar 

Download references


Remarks 2.12.3 and 2.5 are due to the referee. We are very grateful to the referee for these and other helpful comments. The first-named author thanks Centre de Recherches Mathématiques, Montreal, for hospitality. He is partially supported by a J. C. Bose Fellowship.

Author information



Corresponding author

Correspondence to Indranil Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by C. Schweigert

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, I., Logares, M. & Peón-Nieto, A. Moduli Spaces of Framed G–Higgs Bundles and Symplectic Geometry. Commun. Math. Phys. 376, 1875–1908 (2020).

Download citation