Arizmendi, O., Hasebe, T., Lehner, F., Vargas, C.: Relations between cumulants in noncommutative probability. Adv. Math. 282, 56–92 (2015)
MathSciNet
MATH
Article
Google Scholar
Banica, T., Curran, S., Speicher, R.: Classification results for easy quantum groups. Pac. J. Math. 247(1), 1–26 (2010)
MathSciNet
MATH
Article
Google Scholar
Banica, T., Curran, S., Speicher, R.: De Finetti theorems for easy quantum groups. Ann. Probab. 40(1), 401–435 (2012)
MathSciNet
MATH
Article
Google Scholar
Bożejko, M., Speicher, R.: \(\psi \)-independent and symmetrized white noises, pp. 219–236. Quantum Probab. Relat. Top, VI (1991)
MATH
Google Scholar
Curran, S.: Quantum rotatability. Trans. Am. Math. Soc. 362(9), 4831–4851 (2010)
MathSciNet
MATH
Article
Google Scholar
Freedman, D.A.: Invariants under mixing which generalize de Finetti’s theorem: continuous time parameter. Ann. Math. Stat. 34, 1194–1216 (1963)
MathSciNet
MATH
Article
Google Scholar
Hayase, T.: De Finetti theorems for a Boolean analogue of easy quantum groups. J. Math. Sci. Univ. Tokyo 24(3), 355–398 (2017)
MathSciNet
MATH
Google Scholar
Kallenberg, O.: Spreading-invariant sequences and processes on bounded index sets. Probab. Theory Related Fields 118(2), 211–250 (2000)
MathSciNet
MATH
Article
Google Scholar
Kallenberg, O.: Probabilistic Symmetries and Invariance Principles. Probability and Its Applications. Springer, New York (2005)
MATH
Google Scholar
Köstler, C., Speicher, R.: A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation. Commun. Math. Phys. 291(2), 473–490 (2009)
ADS
MathSciNet
MATH
Article
Google Scholar
Lehner, F.: Cumulants in noncommutative probability theory. I. Noncommutative exchangeability systems. Math. Z. 248(1), 67–100 (2004)
MathSciNet
MATH
Article
Google Scholar
Liu, W.: A noncommutative de Finetti theorem for boolean independence. J. Funct. Anal. 269(7), 1950–1994 (2015)
MathSciNet
MATH
Article
Google Scholar
Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge University Press, Cambridge (2006)
Popa, M.: A new proof for the multiplicative property of the Boolean cumulants with applications to the operator-valued case. Colloq. Math. 117(1), 81–93 (2009)
MathSciNet
MATH
Article
Google Scholar
Ryll-Nardzewski, C.: On stationary sequences of random variables and the de Finetti’s equivalence. Colloq. Math. 4, 149–156 (1957)
MathSciNet
MATH
Article
Google Scholar
Sołtan, P.M.: Quantum families of maps and quantum semigroups on finite quantum spaces. J. Geom. Phys. 59(3), 354–368 (2009)
ADS
MathSciNet
MATH
Article
Google Scholar
Sołtan, P.M.: On quantum semigroup actions on finite quantum spaces. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 12(3), 503–509 (2009)
MathSciNet
MATH
Article
Google Scholar
Speicher, R.: On universal products. In: Free probability theory (Waterloo, ON, 1995), volume 12 of Fields Inst. Commun., pp. 257–266. American Mathematical Society, Providence, RI (1997)
Speicher, R.: Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Am. Math. Soc. 132(627), x+88 (1998)
MathSciNet
MATH
Google Scholar
Speicher, Roland, Woroudi, Reza: Boolean convolution. In: Free probability theory (Waterloo, ON, 1995), volume 12 of Fields Inst. Commun., pp. 267–279. American Mathematical Society, Providence, RI (1997)
Strătilă, S.: Modular theory in operator algebras. Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells, (1981). Translated from the Romanian by the author
Voiculescu, D.V., Dykema, K.J., Nica, A.: Free random variables, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups
Wang, S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)
ADS
MathSciNet
MATH
Article
Google Scholar
Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998)
ADS
MathSciNet
MATH
Article
Google Scholar
Weber, M.: On the classification of easy quantum groups. Adv. Math. 245, 500–533 (2013)
MathSciNet
MATH
Article
Google Scholar
Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)
ADS
MathSciNet
MATH
Article
Google Scholar
Woronowicz, S.L.: Unbounded elements affiliated with \(C^*\)-algebras and noncompact quantum groups. Commun. Math. Phys. 136(2), 399–432 (1991)
ADS
MathSciNet
MATH
Article
Google Scholar