Advertisement

Real ADE-Equivariant (co)Homotopy and Super M-Branes

  • John Huerta
  • Hisham Sati
  • Urs SchreiberEmail author
Article

Abstract

A key open problem in M-theory is the identification of the degrees of freedom that are expected to be hidden at ADE-singularities in spacetime. Comparison with the classification of D-branes by K-theory suggests that the answer must come from the right choice of generalized cohomology theory for M-branes. Here we show that real equivariant Cohomotopy on superspaces is a consistent such choice, at least rationally. After explaining this new approach, we demonstrate how to use Elmendorf’s Theorem in equivariant homotopy theory to reveal ADE-singularities as part of the data of equivariant \(S^{4}\)-valued super-cocycles on 11d super-spacetime. We classify these super-cocycles and find a detailed black brane scan that enhances the entries of the old brane scan to cascades of fundamental brane super-cocycles on strata of intersecting black M-brane species. We find that on each singular stratum the black brane’s instanton contribution, namely its super Nambu–Goto/Green–Schwarz action, appears as the homotopy datum associated to the morphisms in the orbit category.

Notes

Acknowledgements

We thank Vincent Braunack-Mayer, David Corfield, Mike Duff, David Roberts, and Christian Saemann for useful comments. We thank the anonymous referee for careful reading and useful suggestions.

References

  1. [Ach02]
    Acharya, B.: M Theory, \(G_2\)-manifolds and four dimensional physics. Class. Quantum Gravity 19, 5619–5653 (2002). http://users.ictp.it/~pub_off/lectures/lns013/Acharya/Acharya_Final.pdf
  2. [AFFHS98]
    Acharya, B.S., Figueroa-O’Farrill, J.M., Hull, C.M., Spence, B.: Branes at conical singularities and holography. Adv. Theor. Math. Phys. 2, 1249–1286 (1999). arXiv:hep-th/9808014 MathSciNetzbMATHCrossRefGoogle Scholar
  3. [AG04]
    Acharya, B., Gukov, S.: M theory and singularities of exceptional holonomy manifolds. Phys. Rep. 392, 121–189 (2004). arXiv:hep-th/0409191 ADSMathSciNetCrossRefGoogle Scholar
  4. [AW01]
    Acharya, B., Witten, E.: Chiral fermions from manifolds of \(G_2\)-holonomy. arXiv:hep-th/0109152
  5. [AETW87]
    Achúcarro, A., Evans, J., Townsend, P., Wiltshire, D.: Super \(p\)-branes. Phys. Lett. B 198, 441–446 (1987). spire:22286 ADSMathSciNetCrossRefGoogle Scholar
  6. [AP93]
    Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge University Press, Cambridge (1993)zbMATHCrossRefGoogle Scholar
  7. [At66]
    Atiyah, M.: K-theory and reality. Q. J. Math. 17(1), 367–386 (1966)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [AW03]
    Atiyah, M., Witten, E.: M-theory dynamics on a manifold of \(G_2\) holonomy. Adv. Theor. Math. Phys. 6, 1–106 (2003). arXiv:hep-th/0107177 zbMATHCrossRefMathSciNetGoogle Scholar
  9. [AzT89]
    de Azcárraga, J., Townsend, P.: Superspace geometry and the classification of supersymmetric extended objects. Phy. Rev. Lett. 62, 2579–2582 (1989). spire:284635 ADSMathSciNetCrossRefGoogle Scholar
  10. [BH10]
    Baez, J., Huerta, J.: Division algebras and supersymmetry I. In: Doran, R., Friedman, G., Rosenberg J. (eds.), Superstrings, Geometry, Topology, and \(C^{\ast }\)-algebras, Proceedings of Symposia in Pure Mathematics 81, AMS, Providence, (2010), pp. 65–80. arXiv:0909.0551
  11. [BH11]
    Baez, J., Huerta, J.: Division algebras and supersymmetry II. Adv. Math. Theor. Phys. 15, 1373–1410 (2011). arXiv:1003.3436 MathSciNetzbMATHCrossRefGoogle Scholar
  12. [BLMP13]
    Bagger, J., Lambert, N., Mukhi, S., Papageorgakis, C.: Multiple membranes in M-theory. Phys. Rep. 527, 1–100 (2013). arXiv:1203.3546 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [Bär93]
    Bär, C.: Real killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [BBS06]
    Becker, K., Becker, M., Schwarz, J.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2006)zbMATHCrossRefGoogle Scholar
  15. [BBS95]
    Becker, K., Becker, M., Strominger, A.: Fivebranes, membranes and non-perturbative string theory. Nucl. Phys. B456, 130–152 (1995). arXiv:hep-th/9507158 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [BeSc98]
    Bergshoeff, E., van der Schaar, J.P.: On M-9-branes. Class. Quantum Gravity 16, 23–39 (1999). arXiv:hep-th/9806069 ADSzbMATHCrossRefGoogle Scholar
  17. [Ber98]
    Berkooz, M.: A supergravity dual of a \((1,0)\) field theory in six dimensions. Phys. Lett. B437, 315–317 (1998). arXiv:hep-th/9802195 ADSMathSciNetCrossRefGoogle Scholar
  18. [BPST10]
    Berman, D., Perry, M., Sezgin, E., Thompson, D.: Boundary conditions for interacting membranes. J. High Energy Phys. 1004, 025 (2010). arXiv:0912.3504 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [Bor94]
    Borceux, F.: Basic Category Theory. Handbook of Categorical Algebra, vol. 1. Cambirdge University Press, Cambirdge (1995)zbMATHGoogle Scholar
  20. [BST87]
    Bergshoeff, E., Sezgin, E., Townsend, P.K.: Supermembranes and eleven-dimensional supergravity. Phys. Lett. B189, 75–78 (1987)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [BG76]
    Bousfield, A., Guggenheim, V.: On PL deRham theory and rational homotopy type. Memoirs of the AMS 179 (1976)Google Scholar
  22. [Bra18]
    Braunack-Mayer, V.: Rational parameterized stable homotopy theory, PhD thesis, Zurich University (2018). https://ncatlab.org/schreiber/show/thesis+Braunack-Mayer
  23. [BlDu88]
    Blencowe, M.P., Duff, M.: Supersingletons. Phys. Lett. B 203, 229–236 (1988). spire:252628 ADSMathSciNetCrossRefGoogle Scholar
  24. [Blu17]
    Blumberg, A.: Equivariant homotopy theory, lecture notes (2017). github.com/adebray/equivariant_homotopy_theory
  25. [BSS18]
    Braunack-Mayer, V., Sati, H., Schreiber, U.: Gauge enhancement for Super M-branes via Parameterized stable homotopy theory. Commun. Math. Phys. (2019). arXiv:1805.05987 [hep-th]
  26. [Bre67]
    Bredon, G.: Equivariant cohomology theories, Springer Lecture Notes in Mathematics Vol. 34 (1967)Google Scholar
  27. [Br72]
    Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)zbMATHGoogle Scholar
  28. [BrHa97]
    Brodie, J., Hanany, A.: Type IIA superstrings, chiral symmetry, and \(N=1\) 4D gauge theory dualities. Nucl. Phys. B506, 157–182 (1997)ADSzbMATHCrossRefGoogle Scholar
  29. [CaSl09]
    Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monomgraphs, Volume 154, American Mathematical Society (2009)Google Scholar
  30. [CL94]
    Candiello, A., Lechner, K.: Duality in supergravity theories. Nucl. Phys. B412, 479–501 (1994). arXiv:hep-th/9309143 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [Cartan1923]
    Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie) Ann. scient. de l’Ecole Normale Supérieure, Sér. 3, 40, 325–412 (1923). http://www.numdam.org/item?id=ASENS_1923_3_40__325_0
  32. [CDF91]
    Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings—A Geometric Perspective. World Scientific, Singapore (1991)zbMATHCrossRefGoogle Scholar
  33. [ClayMP]
    Clay Mathematics Institute: Millenium Problems—YangMills and Mass Gap. www.claymath.org/millennium-problems/yang-mills-and-mass-gap
  34. [CF59]
    Conner, P.E., Floyd, E.E.: On the construction of periodic maps without fixed points. Proc. Am. Math. Soc. 10, 354–360 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [DNP03]
    Dasgupta, A., Nicolai, H., Plefka, J.: An Introduction to the Quantum Supermembrane, Grav. Cosmol. 8, 1 (2002); Rev. Mex. Fis. 49(S1), 1–10 (2003). arXiv:hep-th/0201182
  36. [MdF+09]
    de Medeiros, P., Figueroa-O’Farrill, J., Gadhia, S., Méndez-Escobar, E.: Half-BPS quotients in M-theory: ADE with a twist. J. High Energy Phys. 0910, 038 (2009). arXiv:0909.0163 MathSciNetCrossRefGoogle Scholar
  37. [MdF09]
    de Medeiros, P., Figueroa-O’Farrill, J.: Half-BPS M2-brane orbifolds. Adv. Theor. Math. Phys. 16, 1349–1408 (2012). arXiv:1007.4761 MathSciNetzbMATHCrossRefGoogle Scholar
  38. [dWHN88]
    de Wit, B., Hoppe, J., Nicolai, H.: On the quantum mechanics of supermembranes. Nucl. Phys. B305, 545–581 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [DZHTV15]
    Del Zotto, M., Heckman, J., Tomasiello, A., Vafa, C.: 6d conformal matter. J. High Energy Phys. 2015, 54 (2015). arXiv:1407.6359 MathSciNetzbMATHCrossRefGoogle Scholar
  40. [DF99]
    Deligne, P., Freed, D.: Sign manifesto publications.ias.edu/sites/default/files/79_SignManifesto.pdf, in Supersolutions arXiv:hep-th/9901094. In: Deligne, P. et. al. (eds.) Quantum Fields and Strings, A course for mathematicians, AMS (1999)
  41. [DMW03]
    Diaconescu, D., Moore, G., Witten, E.: \(E_8\)-gauge theory and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003). arXiv:hep-th/0005090 CrossRefMathSciNetGoogle Scholar
  42. [DFM09]
    Distler, J., Freed, D., Moore, G.: Orientifold Précis In: Sati, H., Schreiber, U. (eds.), Mathematical Foundations of Quantum Field and Perturbative String Theory, Proceedings of Symposia in Pure Mathematics, AMS (2011) arXiv:0906.0795. https://ncatlab.org/nlab/files/FreedESI2012.pdf
  43. [DMR13]
    Doran, C., Mendez-Diez, S., Rosenberg, J.: T-duality for orientifolds and twisted KR-theory. Lett. Math. Phys. 104(11), 1333–1364 (2014). arXiv:1306.1779 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [Du88]
    Duff, M.: Supermembranes: the first fifteen weeks. Class. Quantum Gravity 5, 189–205 (1988). spire:248034 ADSMathSciNetCrossRefGoogle Scholar
  45. [Du99]
    Duff, M.: Anti-de Sitter space, branes, singletons, superconformal field theories and all that. Int. J. Mod. Phys. A14, 815–844 (1999). [arXiv:hep-th/9808100]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [Du99L]
    Duff, M.: TASI Lectures on Branes, Black Holes and Anti-de Sitter Space. arXiv:hep-th/9912164
  47. [Du99B]
    Duff, M. (ed.): The World in Eleven Dimensions: Supergravity. Supermembranes and M-Theory. IoP, Bristol (1999)zbMATHGoogle Scholar
  48. [Du08]
    Duff, M.: Near-horizon brane-scan revived. Nucl. Phys. B810, 193–209 (2009). arXiv:0804.3675 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [DIPSS88]
    Duff, M., Inami, T., Pope, C., Sezgin, E., Stelle, K.: Semiclassical quantization of the supermembrane. Nucl. Phys. B297, 515–538 (1988). spire:247064 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [DKL95]
    Duff, M., Khuri, R., Lu, J.X.: String solitons. Phys. Rep. 259, 213–326 (1995). arXiv:hep-th/9412184 ADSMathSciNetCrossRefGoogle Scholar
  51. [DuLu93]
    Duff, M., Lu, J.: Black and super \(p\)-branes in diverse dimensions. Nucl. Phys. B416, 301–334 (1994). arXiv:hep-th/9306052 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [DuSu88]
    Duff, M., Sutton, C.: The membrane at the end of the universe. New Sci. 118, 67–71 (1988)Google Scholar
  53. [DHIS87]
    Duff, M., Howe, P., Inami, T., Stelle, K.: Superstrings in \(D =10\) from Supermembranes in \(D =11\). Phys. Lett. B191, 70–74 (1987). reprinted in [Du99] spire:245249 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [DuLu92]
    Duff, M.J., Lu, J.X.: Type II p-branes: the brane-scan revisited. Nucl. Phys. B390, 276–290 (1993). arXiv:hep-th/9207060 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [DuVal34]
    P. du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction, I, II and III, Proc. Camb. Phil. Soc. 30 1934, 453–459, 460–465, 483–491Google Scholar
  56. [EE12]
    Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity. J. Geom. Phys. 62, 53–60 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [EGKRS00]
    Elitzur, S., Giveon, A., Kutasov, D., Rabinovici, E., Sarkissian, G.: D-branes in the background of NS fivebranes. J. High Energy Phys. 0008, 046 (2000). arXiv:hep-th/0005052 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [El83]
    Elmendorf, A.: Systems of fixed point sets. Trans. Am. Math. Soc. 277, 275–284 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  59. [EG73]
    Epstein, H., Glaser, V.: The Role of locality in perturbation theory. Annales Poincaré Phys. Theor. A 19, 211 (1973). http://www.numdam.org/item?id=AIHPA_1973__19_3_211_0
  60. [Evs06]
    Evslin, J.: What Does(n’t) K-theory Classify?, Second Modave Summer School in Mathematical Physics. arXiv:hep-th/0610328
  61. [EvSa06]
    Evslin, J., Sati, H.: Can D-branes wrap nonrepresentable cycles? J. High Energy Phys. 0610, 050 (2006). arXiv:hep-th/0607045 ADSMathSciNetCrossRefGoogle Scholar
  62. [Fa17]
    Fazzi, M.: Higher-dimensional field theories from type II supergravity. arXiv:1712.04447
  63. [FF]
    Figueroa-O’Farrill, J.: Majorana spinors. http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf
  64. [FF98]
    Figueroa-O’Farrill, J.: Near-horizon geometries of supersymmetric branes, talk at SUSY98. arXiv:hep-th/9807149
  65. [FOS17]
    Figueroa-O’Farrill, J., Santi, A.: Spencer cohomology and eleven-dimensional supergravity. Commun. Math. Phys. 349, 627–660 (2017). arXiv:1511.08737 [hep-th]ADSzbMATHCrossRefGoogle Scholar
  66. [FSS12]
    Fiorenza, D., Sati, H., Schreiber, U.: Multiple M5-branes, string 2-connections, and 7d nonabelian Chern-Simons theory. Adv. Theor. Math. Phys. 18, 229–321 (2014). arXiv:1201.5277 MathSciNetzbMATHCrossRefGoogle Scholar
  67. [FSS13]
    Fiorenza, D., Sati, H., Schreiber, U.: Super Lie \(n\)-algebra extensions, higher WZW models, and super \(p\)-branes with tensor multiplet fields. Int. J. Geom. Methods Mod. Phys. 12, 1550018 (2015). arXiv:1308.5264 MathSciNetzbMATHCrossRefGoogle Scholar
  68. [FSS16a]
    Fiorenza, D., Sati, H., Schreiber, U.: Rational sphere valued supercocycles in M-theory and type IIA string theory. J. Geom. Phys. 114, 91–108 (2017). arXiv:1606.03206 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [FSS15b]
    Fiorenza, D., Sati, H., Schreiber, U.: The WZW term of the M5-brane and differential cohomotopy. J. Math. Phys. 56, 102301 (2015). arXiv:1506.07557 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [FSS16b]
    Fiorenza, D., Sati, H., Schreiber, U.: T-Duality from super Lie \(n\)-algebra cocycles for super p-branes. Adv. Theor. Math. Phys. 22(5), (2018). arXiv:1611.06536
  71. [FSS17]
    Fiorenza, D., Sati, H., Schreiber, U.: T-duality in rational homotopy theory via \(L_{\infty }\)-algebras, Geom. Topol. Math. Phys. 1, (2018), special volume in tribute of Jim Stasheff and Dennis Sullivan. arXiv:1712.00758 [math-ph]
  72. [FSS18]
    Fiorenza, D., Sati, H., Schreiber, U.: Higher T-duality of M-branes. arXiv:1803.05634
  73. [FSS19]
    Fiorenza, D., Sati, H., Schreiber, U.: The rational higher structure of M-theory, Proceedings of Higher Structures in M-Theory, Durham Symposium 2018, Fortsch. Phys. (2019)Google Scholar
  74. [Fre00]
    Freed, D.: Dirac charge quantization and generalized differential cohomology, Surveys in Differential Geometry, Int. Press, Somerville, MA, pp. 129–194 (2000) arXiv:hep-th/0011220
  75. [FrWi99]
    Freed, D., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819–852 (1999). arXiv:hep-th/9907189 MathSciNetzbMATHCrossRefGoogle Scholar
  76. [Ga97]
    Gauntlett, J.: Intersecting Branes, in Dualities in Gauge and String Theories, Proc. APCTP Winter School “Dualities of Gauge and String Theories”, Korea (1997). arXiv:hep-th/9705011
  77. [GKST01]
    Gorbatov, E., Kaplunovsky, V.S., Sonnenschein, J., Theisen, S., Yankielowicz, S.: On heterotic orbifolds, M theory and type I’ brane engineering. J. High Energy Phys. 0205, 015 (2002). arXiv:hep-th/0108135 ADSMathSciNetCrossRefGoogle Scholar
  78. [GS18a]
    Grady, D., Sati, H.: Twisted differential generalized cohomology theories and their Atiyah-Hirzebruch spectral sequence, to appear in Alg. Geom. Top. arXiv:1711.06650 [math.AT]
  79. [GS18b]
    Grady, D., Sati, H.: Differential KO-theory: constructions, computations, and applications, [arXiv:1809.07059] [math.AT]
  80. [GS19]
    Grady, D., Sati, H.: Ramond-Ramond fields and twisted differential K-theory, preprintGoogle Scholar
  81. [Gue92]
    Gueven, R.: Black \(p\)-brane solutions of \(D = 11\) supergravity theory. Phys. Lett. B276, 49–55 (1992). (reprinted in [Du99B]) spire:338203 ADSMathSciNetCrossRefGoogle Scholar
  82. [Gu65]
    Guillemin, V.: The integrability problem for \(G\)-structures. Trans. Am. Math. Soc. 116, 544–560 (1965). jstor:1994134 MathSciNetzbMATHGoogle Scholar
  83. [Guk99]
    Gukov, S.: K-theory, reality, and orientifolds. Commun. Math. Phys. 210, 621–639 (2000). arXiv:hep-th/9901042 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [HIKLV15]
    Haghighat, B., Iqbal, A., Kozcaz, C., Lockhart, G., Vafa, C.: M-strings. Commun. Math. Phys. 334, 779–842 (2015). arXiv:1305.6322 ADSzbMATHCrossRefGoogle Scholar
  85. [HK85]
    Han, S.K., Koh, I.G.: \(N=4\) remaining supersymmetry in Kaluza-Klein monopole background in \(\text{ D }=11\) supergravity theory. Phys. Rev. D31, 2503–2506 (1985)ADSMathSciNetGoogle Scholar
  86. [HaKo00]
    Hanany, A., Kol, B.: On orientifolds, discrete torsion, branes and M theory. J. High Energy Phys. 0006, 013 (2000). arXiv:hep-th/0003025 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. [HaMo99]
    Harvey, J., Moore, G.: Superpotentials and Membrane Instantons. arXiv:hep-th/9907026
  88. [HMV13]
    Heckman, J., Morrison, D., Vafa, C.: On the classification of 6D SCFTs and generalized ADE orbifolds. J. High Energ. Phys. 2014, 28 (2014). arXiv:1312.5746 CrossRefGoogle Scholar
  89. [Hes06]
    Hess, K.: Rational homotopy theory: a brief introduction, Interactions between homotopy theory and algebra, 175–202. Contemp. Math 436 arXiv:math.AT/0604626
  90. [HHR09]
    Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016). arXiv:0908.3724 MathSciNetzbMATHCrossRefGoogle Scholar
  91. [HI13]
    Hohenegger, S., Iqbal, A.: M-strings, Elliptic Genera and \(N=4\) String Amplitudes. arXiv:1310.1325
  92. [HoIs12]
    Hollands, S., Ishibashi, A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Gravity 29, 163001 (2012). arXiv:1206.1164 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [HW95]
    Hořava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B460, 506–524 (1996). arXiv:hep-th/9510209 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [HW96]
    Hořava, P., Witten, E.: Eleven dimensional supergravity on a manifold with boundary. Nucl. Phys. B475, 94–114 (1996). arXiv:hep-th/9603142 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [Hor97]
    Hori, K.: Consistency conditions for fivebrane in M theory on \({\mathbb{R}}^5/{\mathbb{Z}}_2\) orbifold. Nucl. Phys. B539, 35–78 (1999). arXiv:hep-th/9805141 ADSCrossRefzbMATHGoogle Scholar
  96. [Hor99]
    Hori, K.: D-branes, T-duality, and index theory. Adv. Theor. Math. Phys. 3, 281–342 (1999). arXiv:hep-th/9902102 MathSciNetzbMATHCrossRefGoogle Scholar
  97. [Ho97]
    Howe, P.: Weyl superspace. Phys. Lett. B 415, 149–155 (1997). arXiv:hep-th/9707184 ADSMathSciNetCrossRefGoogle Scholar
  98. [HuKr01]
    Hu, P., Kriz, I.: Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence. Topology 40, 317–399 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  99. [HS17]
    Huerta, J., Schreiber, U.: M-theory from the superpoint. Lett. Math. Phys. 108, 2695–2727 (2018). arXiv:1702.01774 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  100. [Hul84]
    Hull, C.: Exact pp wave solutions of eleven-dimensional supergravity. Phys. Lett. B 139, 39–41 (1984). spire:14499 ADSGoogle Scholar
  101. [IU12]
    Ibáñez, L., Uranga, A.: String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  102. [Kas00]
    Kashima, K.: The M2-brane solution of heterotic M-theory with the Gauss-Bonnet \(R^{2}\) terms. Prog. Theor. Phys. 105, 301–321 (2001). arXiv:hep-th/0010286 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  103. [Kee03]
    Keenan, A.: Which finite groups act freely on spheres? (2003) www.math.utah.edu/~keenan/actions.pdf
  104. [KKLPV14]
    Kim, J., Kim, S., Lee, K., Park, J., Vafa, C.: Elliptic genus of E-strings. J. High Energy Phys. 1709, 098 (2017). arXiv:1411.2324 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. [Klein1872]
    Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen (1872), translation by Haskell, M.W.: A comparative review of recent researches in geometry. Bull. N. Y. Math. Soc. 2, 215–249 (1892–1893)Google Scholar
  106. [Klein1884]
    Klein, F.: Vorlesungen uber das Ikosaeder und die Auflösung der Gleichungen vom funften Grade, 1884, translated as Lectures on the Icosahedron and the Resolution of Equations of Degree Five by George Morrice (1888). archive.org/details/cu31924059413439
  107. [KS05]
    Kriz, I., Sati, H.: Type IIB string theory, S-duality, and generalized cohomology. Nucl. Phys. B715, 639–664 (2005). arXiv:hep-th/0410293 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  108. [KuTo82]
    Kugo, T., Townsend, P.: Supersymmetry and the division algebras. Nucl. Phys. B 221, 357–380 (1982). spire:181889 ADSMathSciNetGoogle Scholar
  109. [LLO97]
    Lalak, Z., Lukas, A., Ovrut, B.: Soliton solutions of M-theory on an orbifold. Phys. Lett. B425, 59–70 (1998). arXiv:hep-th/9709214 ADSMathSciNetCrossRefGoogle Scholar
  110. [Lot90]
    Lott, J.: The geometry of supergravity torsion constraints. Commun. Math. Phys. 133, 563–615 (1990). see arXiv:math/0108125 ADSzbMATHCrossRefGoogle Scholar
  111. [Lu09-]
    Lurie, J.: Higher Topos Theory, [arXiv:math/0608040], Higher Algebra [www.math.harvard.edu/~lurie/papers/HA.pdf], Spectral Algebraic Geometry. www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf
  112. [MaS04]
    Mathai, V., Sati, H.: Some relations between twisted K-theory and \(E_8\) gauge theory. J. High Energy Phys. 03, 016 (2004). arXiv:hep-th/0312033 ADSCrossRefMathSciNetGoogle Scholar
  113. [May+96]
    May, J.P. ed., Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Conference Board of the Mathematical Sciences, Washington, DC (1996)Google Scholar
  114. [Maz01]
    Mazur, P.O.: Black Uniqueness Theorems, In: MacCallum, M.A.H. (ed.) Proceedings of the 11th International Conference on General Relativity and Gravitation, Cambridge University Press, pp. 130–157 (1987). arXiv:hep-th/0101012
  115. [MBD1916]
    Miller, G.A., Blichfeldt, H.F., Dickson, L.E.: Theory and Applications of Finite Groups. Dover, New York (1916)zbMATHGoogle Scholar
  116. [MooreStrings2014]
    Moore, G.: Physical Mathematics and the Future, talk at Strings (2014). http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf
  117. [MoWi00]
    Moore, G., Witten, E.: Self-duality, Ramond–Ramond fields, and K-theory. J. High Energy Phys. 0005, 032 (2000). arXiv:hep-th/9912279 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. [MP99]
    Morrison, D.R., Plesser, M.R.: Non-spherical horizons I. Adv. Theor. Math. Phys. 3, 1–81 (1999). arXiv:hep-th/9810201 MathSciNetzbMATHCrossRefGoogle Scholar
  119. [vN82]
    van Nieuwenhuizen, P.: Free Graded Differential Superalgebras, In: Istanbul 1982, Proceedings, Group Theoretical Methods In Physics, pp. 228–247. 182644
  120. [PST99]
    Pasti, P., Sorokin, D., Tonin, M.: Branes in Super-AdS Backgrounds and Superconformal Theories, Talk at Supersymmetry and Quantum Symmetries, JINR (1999). arXiv:hep-th/9912076
  121. [Ph05]
    Philip, S.: Plane-wave limits and homogeneous M-theory backgrounds (2005). https://www.era.lib.ed.ac.uk/bitstream/handle/1842/15645/Philip2005.Pdf?sequence=1
  122. [Qu69]
    Quillen, D.: Rational homotopy theory. Ann. Math. (2) 90, 205–295 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  123. [Ra03]
    Ravenel, D.: Complex cobordism and stable homotopy groups of spheres, AMS (2003). http://web.math.rochester.edu/people/faculty/doug/mu.html
  124. [Re87]
    Reid, M.: Young person’s guide to canonical singularities, In: Bloch, S. (ed.), Algebraic geometry – Bowdoin 1985, Part 1, Proc. Sympos. Pure Math. 46 Part 1, American Mathematical Society, Providence, RI, pp. 345–414 (1987)Google Scholar
  125. [Ree05]
    Rees, E.: Notes on Geometry. Springer, Berlin (2005)Google Scholar
  126. [Sa05a]
    Sati, H.: M-theory and characteristic classes. J. High Energy Phys. 0508, 020 (2005). arXiv:hep-th/0501245 ADSMathSciNetCrossRefGoogle Scholar
  127. [Sa05b]
    Sati, H.: Flux quantization and the M-theoretic characters. Nucl. Phys. B727, 461–470 (2005). arXiv:hep-th/0507106 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  128. [Sa06]
    Sati, H.: Duality symmetry and the form fields of M-theory. J. High Energy Phys. 0606, 062 (2006). arXiv:hep-th/0509046 ADSMathSciNetCrossRefGoogle Scholar
  129. [Sa09]
    Sati, H.: A higher twist in string theory. J. Geom. Phys. 59(3), 369–373 (2009). arXiv:hep-th/0701232 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  130. [Sa10]
    Sati, H.: Geometric and topological structures related to M-branes, Superstrings, geometry, topology, and \(C^{*}\)-algebras, 181-236, Proc. Sympos. Pure Math., 81, Amer. Math. Soc., Providence, RI, (2010). arXiv:1001.5020 [math.DG]
  131. [Sa11]
    Sati, H.: Topological aspects of the NS5-brane. arXiv:1109.4834 [hep-th]
  132. [Sa13]
    Sati, H.: Framed M-branes, corners, and topological invariants. J. Math. Phys. 59, 062304 (2018). arXiv:1310.1060 [hepth]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. [SS11]
    Sati, H., Schreiber, U.: Survey of mathematical foundations of QFT and perturbative string theory, Introduction to Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Amer. Math. Soc., Providence, RI, (2011). arXiv:1109.0955 [math-ph]
  134. [SS18]
    Sati, H., Schreiber, U.: Higher T-duality of M-branes via local supersymmetry. Phys. Lett. B 781, 694–698 (2018). arXiv:1805.00233 [hep-th]ADSzbMATHCrossRefGoogle Scholar
  135. [ScSc95]
    Schmidt, M.G., Schubert, C.: The Worldline Path Integral Approach to Feynman Graphs. arXiv:hep-ph/9412358
  136. [Sch13]
    Schreiber, U.: Differential cohomology in a cohesive \(\infty \)-topos. https://ncatlab.org/schreiber/files/dcct170811.pdf
  137. [Sch15]
    Schreiber, U.: Higher Cartan Geometry, lecture notes, Prague (2015). https://ncatlab.org/schreiber/show/Higher+Cartan+Geometry
  138. [Sch16]
    Schreiber, U.: Fundamental super \(p\)-Branes, lectures at: Sati, H. (org.), Flavors of Cohomology, Pittsburgh (2015). https://ncatlab.org/nlab/show/geometry+of+physics+--+fundamental+super+p-branes
  139. [Sch17a]
    Schreiber, U.: Introduction to Topology, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Topology
  140. [Sch17b]
    Schreiber, U.: Introduction to Homotopy Theory, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory
  141. [Sch17c]
    Schreiber, U.: Introduction to Stable Homotopy Theory, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1
  142. [Sch17d]
    Schreiber, U.: Introduction to Stable Homotopy Theory— Examples and Application, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Cobordism+and+Complex+Oriented+Cohomology
  143. [Sch18]
    Schreiber, U.: Perturbative Quantum Field Theory, lecture notes, Hamburg (2018). https://ncatlab.org/nlab/show/geometry+of+physics+--+perturbative+quantum+field+theory
  144. [Sch96]
    Schubert, C.: An introduction to the worldline technique for quantum field theory calculations. Acta Phys. Pol. B27, 3965–4001 (1996). arXiv:hep-th/9610108 Google Scholar
  145. [Scu01]
    Scull, L.: Rational \(S^1\)-equivariant homotopy theory. Trans. Am. Math. Soc. 354, 1–45 (2001). (pdf)MathSciNetzbMATHCrossRefGoogle Scholar
  146. [Sen97]
    Sen, A.: A note on enhanced gauge symmetries in M- and string theory. J. High Energy Phys. 9709, 001 (1997). arXiv:hep-th/9707123 ADSMathSciNetCrossRefGoogle Scholar
  147. [Ser14]
    Serrano, J.: Finite subgroups of \(SL(2,{\mathbb{C}})\) and \(SL(3,{\mathbb{C}})\), Warwick (2014). https://homepages.warwick.ac.uk/~masda/McKay/CarrascoProject.pdf
  148. [Sh17]
    Shulman, M.: Homotopy type theory: the logic of space, In: Catren, G., Anel, M. New Spaces for Mathematics and Physics. arXiv:1703.03007
  149. [Slo80]
    Slodowy, P.: Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics 815. Springer, Berlin (1980)zbMATHCrossRefGoogle Scholar
  150. [Sor99]
    Sorokin, D.: Superbranes and superembeddings. Phys. Rep. 329, 1–101 (2000). arXiv:hep-th/9906142 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  151. [Sor01]
    Sorokin, D.: Introduction to the superembedding description of superbranes. AIP Conf. Proc. 589, 98 (2001). arXiv:hep-th/0105102 ADSCrossRefGoogle Scholar
  152. [Spa49]
    Spanier, E.: Borsuk’s cohomotopy groups. Ann. Math. 50, 203–245 (1949). jstor:1969362 MathSciNetzbMATHCrossRefGoogle Scholar
  153. [Str96]
    Strominger, A.: Open P-branes. Phys. Lett. B 383, 44–47 (1996). arXiv:hep-th/9512059 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  154. [Su77]
    Sullivan, D.: Infinitesimal computations in topology. Publ. Math. de I.H.É.S. 47, 269–331 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  155. [Sus05]
    Suslov, I.M.: Divergent perturbation series. J. Exp. Theor. Phys. 100, 1188 (2005). arXiv:hep-ph/0510142 ADSCrossRefGoogle Scholar
  156. [To95]
    Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–187 (1995). arXiv:hep-th/9501068 ADSMathSciNetCrossRefGoogle Scholar
  157. [Wan80]
    Waner, S.: Equivariant homotopy theory and Milnor’s theorem. Trans. Am. Math. Soc. 258, 351–368 (1980). jstor:1998061 MathSciNetzbMATHGoogle Scholar
  158. [Wa89]
    Wang, M.Y.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7(1), 59–68 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  159. [We17]
    Wellen, F.: Formalizing Cartan Geometry in Modal Homotopy Type Theory, PhD Thesis, KIT (2017). ncatlab.org/schreiber/show/thesis+Wellen
  160. [Wi95a]
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B443, 85–126 (1995). arXiv:hep-th/9503124 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  161. [Wi95b]
    Witten, E.: Some Comments On String Dynamics, In: Bars, I. et. al, (eds.) Proceedings of String95. arXiv:hep-th/9507121
  162. [Wi95c]
    Witten, E.: Five-branes and M-theory on an orbifold. Nucl. Phys. B 463, 383–397 (1996). arXiv:hep-th/9512219 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  163. [Wi98]
    Witten, E.: D-branes and K-theory. J. High Energy Phys. 12, 019 (1998). arXiv:hep-th/9810188 ADSzbMATHCrossRefGoogle Scholar
  164. [Wi02]
    Witten, E.: Singularities in string theory, Proceedings of the ICM, Beijing 1, 495–504 (2002). arXiv:hep-th/0212349
  165. [Wi03]
    Witten, E.: Viewpoints on String Theory, NOVA interview (2003). www.pbs.org/wgbh/nova/elegant/view-witten.html
  166. [Wi15]
    Witten, E.: What every physicist should know about string theory, talk at Strings2015 strings2015.icts.res.in/talkDocuments/26-06-2015-Edward-Witten.pdf

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAMGSDInstituto Superior TécnicoLisboaPortugal
  2. 2.Division of Science and MathematicsNew York UniversityAbu DhabiUAE

Personalised recommendations