Real ADE-Equivariant (co)Homotopy and Super M-Branes
Abstract
A key open problem in M-theory is the identification of the degrees of freedom that are expected to be hidden at ADE-singularities in spacetime. Comparison with the classification of D-branes by K-theory suggests that the answer must come from the right choice of generalized cohomology theory for M-branes. Here we show that real equivariant Cohomotopy on superspaces is a consistent such choice, at least rationally. After explaining this new approach, we demonstrate how to use Elmendorf’s Theorem in equivariant homotopy theory to reveal ADE-singularities as part of the data of equivariant \(S^{4}\)-valued super-cocycles on 11d super-spacetime. We classify these super-cocycles and find a detailed black brane scan that enhances the entries of the old brane scan to cascades of fundamental brane super-cocycles on strata of intersecting black M-brane species. We find that on each singular stratum the black brane’s instanton contribution, namely its super Nambu–Goto/Green–Schwarz action, appears as the homotopy datum associated to the morphisms in the orbit category.
Notes
Acknowledgements
We thank Vincent Braunack-Mayer, David Corfield, Mike Duff, David Roberts, and Christian Saemann for useful comments. We thank the anonymous referee for careful reading and useful suggestions.
References
- [Ach02]Acharya, B.: M Theory, \(G_2\)-manifolds and four dimensional physics. Class. Quantum Gravity 19, 5619–5653 (2002). http://users.ictp.it/~pub_off/lectures/lns013/Acharya/Acharya_Final.pdf
- [AFFHS98]Acharya, B.S., Figueroa-O’Farrill, J.M., Hull, C.M., Spence, B.: Branes at conical singularities and holography. Adv. Theor. Math. Phys. 2, 1249–1286 (1999). arXiv:hep-th/9808014 MathSciNetzbMATHGoogle Scholar
- [AG04]Acharya, B., Gukov, S.: M theory and singularities of exceptional holonomy manifolds. Phys. Rep. 392, 121–189 (2004). arXiv:hep-th/0409191 ADSMathSciNetGoogle Scholar
- [AW01]Acharya, B., Witten, E.: Chiral fermions from manifolds of \(G_2\)-holonomy. arXiv:hep-th/0109152
- [AETW87]Achúcarro, A., Evans, J., Townsend, P., Wiltshire, D.: Super \(p\)-branes. Phys. Lett. B 198, 441–446 (1987). spire:22286 ADSMathSciNetGoogle Scholar
- [AP93]Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
- [At66]Atiyah, M.: K-theory and reality. Q. J. Math. 17(1), 367–386 (1966)ADSMathSciNetzbMATHGoogle Scholar
- [AW03]Atiyah, M., Witten, E.: M-theory dynamics on a manifold of \(G_2\) holonomy. Adv. Theor. Math. Phys. 6, 1–106 (2003). arXiv:hep-th/0107177 zbMATHGoogle Scholar
- [AzT89]de Azcárraga, J., Townsend, P.: Superspace geometry and the classification of supersymmetric extended objects. Phy. Rev. Lett. 62, 2579–2582 (1989). spire:284635 ADSMathSciNetGoogle Scholar
- [BH10]Baez, J., Huerta, J.: Division algebras and supersymmetry I. In: Doran, R., Friedman, G., Rosenberg J. (eds.), Superstrings, Geometry, Topology, and \(C^{\ast }\)-algebras, Proceedings of Symposia in Pure Mathematics 81, AMS, Providence, (2010), pp. 65–80. arXiv:0909.0551
- [BH11]Baez, J., Huerta, J.: Division algebras and supersymmetry II. Adv. Math. Theor. Phys. 15, 1373–1410 (2011). arXiv:1003.3436 MathSciNetzbMATHGoogle Scholar
- [BLMP13]Bagger, J., Lambert, N., Mukhi, S., Papageorgakis, C.: Multiple membranes in M-theory. Phys. Rep. 527, 1–100 (2013). arXiv:1203.3546 ADSMathSciNetzbMATHGoogle Scholar
- [Bär93]Bär, C.: Real killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)ADSMathSciNetzbMATHGoogle Scholar
- [BBS06]Becker, K., Becker, M., Schwarz, J.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
- [BBS95]Becker, K., Becker, M., Strominger, A.: Fivebranes, membranes and non-perturbative string theory. Nucl. Phys. B456, 130–152 (1995). arXiv:hep-th/9507158 ADSMathSciNetzbMATHGoogle Scholar
- [BeSc98]Bergshoeff, E., van der Schaar, J.P.: On M-9-branes. Class. Quantum Gravity 16, 23–39 (1999). arXiv:hep-th/9806069 ADSzbMATHGoogle Scholar
- [Ber98]Berkooz, M.: A supergravity dual of a \((1,0)\) field theory in six dimensions. Phys. Lett. B437, 315–317 (1998). arXiv:hep-th/9802195 ADSMathSciNetGoogle Scholar
- [BPST10]Berman, D., Perry, M., Sezgin, E., Thompson, D.: Boundary conditions for interacting membranes. J. High Energy Phys. 1004, 025 (2010). arXiv:0912.3504 ADSMathSciNetzbMATHGoogle Scholar
- [Bor94]Borceux, F.: Basic Category Theory. Handbook of Categorical Algebra, vol. 1. Cambirdge University Press, Cambirdge (1995)zbMATHGoogle Scholar
- [BST87]Bergshoeff, E., Sezgin, E., Townsend, P.K.: Supermembranes and eleven-dimensional supergravity. Phys. Lett. B189, 75–78 (1987)ADSMathSciNetzbMATHGoogle Scholar
- [BG76]Bousfield, A., Guggenheim, V.: On PL deRham theory and rational homotopy type. Memoirs of the AMS 179 (1976)Google Scholar
- [Bra18]Braunack-Mayer, V.: Rational parameterized stable homotopy theory, PhD thesis, Zurich University (2018). https://ncatlab.org/schreiber/show/thesis+Braunack-Mayer
- [BlDu88]Blencowe, M.P., Duff, M.: Supersingletons. Phys. Lett. B 203, 229–236 (1988). spire:252628 ADSMathSciNetGoogle Scholar
- [Blu17]Blumberg, A.: Equivariant homotopy theory, lecture notes (2017). github.com/adebray/equivariant_homotopy_theory
- [BSS18]Braunack-Mayer, V., Sati, H., Schreiber, U.: Gauge enhancement for Super M-branes via Parameterized stable homotopy theory. Commun. Math. Phys. (2019). arXiv:1805.05987 [hep-th]
- [Bre67]Bredon, G.: Equivariant cohomology theories, Springer Lecture Notes in Mathematics Vol. 34 (1967)zbMATHGoogle Scholar
- [Br72]Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)zbMATHGoogle Scholar
- [BrHa97]Brodie, J., Hanany, A.: Type IIA superstrings, chiral symmetry, and \(N=1\) 4D gauge theory dualities. Nucl. Phys. B506, 157–182 (1997)ADSzbMATHGoogle Scholar
- [CaSl09]Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monomgraphs, Volume 154, American Mathematical Society (2009)Google Scholar
- [CL94]Candiello, A., Lechner, K.: Duality in supergravity theories. Nucl. Phys. B412, 479–501 (1994). arXiv:hep-th/9309143 ADSMathSciNetzbMATHGoogle Scholar
- [Cartan1923]Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie) Ann. scient. de l’Ecole Normale Supérieure, Sér. 3, 40, 325–412 (1923). http://www.numdam.org/item?id=ASENS_1923_3_40__325_0
- [CDF91]Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings—A Geometric Perspective. World Scientific, Singapore (1991)zbMATHGoogle Scholar
- [ClayMP]Clay Mathematics Institute: Millenium Problems—YangMills and Mass Gap. www.claymath.org/millennium-problems/yang-mills-and-mass-gap
- [CF59]Conner, P.E., Floyd, E.E.: On the construction of periodic maps without fixed points. Proc. Am. Math. Soc. 10, 354–360 (1959)MathSciNetzbMATHGoogle Scholar
- [DNP03]Dasgupta, A., Nicolai, H., Plefka, J.: An Introduction to the Quantum Supermembrane, Grav. Cosmol. 8, 1 (2002); Rev. Mex. Fis. 49(S1), 1–10 (2003). arXiv:hep-th/0201182
- [MdF+09]de Medeiros, P., Figueroa-O’Farrill, J., Gadhia, S., Méndez-Escobar, E.: Half-BPS quotients in M-theory: ADE with a twist. J. High Energy Phys. 0910, 038 (2009). arXiv:0909.0163 MathSciNetGoogle Scholar
- [MdF09]de Medeiros, P., Figueroa-O’Farrill, J.: Half-BPS M2-brane orbifolds. Adv. Theor. Math. Phys. 16, 1349–1408 (2012). arXiv:1007.4761 MathSciNetzbMATHGoogle Scholar
- [dWHN88]de Wit, B., Hoppe, J., Nicolai, H.: On the quantum mechanics of supermembranes. Nucl. Phys. B305, 545–581 (1988)ADSMathSciNetzbMATHGoogle Scholar
- [DZHTV15]Del Zotto, M., Heckman, J., Tomasiello, A., Vafa, C.: 6d conformal matter. J. High Energy Phys. 2015, 54 (2015). arXiv:1407.6359 MathSciNetzbMATHGoogle Scholar
- [DF99]Deligne, P., Freed, D.: Sign manifesto publications.ias.edu/sites/default/files/79_SignManifesto.pdf, in Supersolutions arXiv:hep-th/9901094. In: Deligne, P. et. al. (eds.) Quantum Fields and Strings, A course for mathematicians, AMS (1999)
- [DMW03]Diaconescu, D., Moore, G., Witten, E.: \(E_8\)-gauge theory and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003). arXiv:hep-th/0005090 Google Scholar
- [DFM09]Distler, J., Freed, D., Moore, G.: Orientifold Précis In: Sati, H., Schreiber, U. (eds.), Mathematical Foundations of Quantum Field and Perturbative String Theory, Proceedings of Symposia in Pure Mathematics, AMS (2011) arXiv:0906.0795. https://ncatlab.org/nlab/files/FreedESI2012.pdf
- [DMR13]Doran, C., Mendez-Diez, S., Rosenberg, J.: T-duality for orientifolds and twisted KR-theory. Lett. Math. Phys. 104(11), 1333–1364 (2014). arXiv:1306.1779 ADSMathSciNetzbMATHGoogle Scholar
- [Du88]Duff, M.: Supermembranes: the first fifteen weeks. Class. Quantum Gravity 5, 189–205 (1988). spire:248034 ADSMathSciNetGoogle Scholar
- [Du99]Duff, M.: Anti-de Sitter space, branes, singletons, superconformal field theories and all that. Int. J. Mod. Phys. A14, 815–844 (1999). [arXiv:hep-th/9808100]ADSMathSciNetzbMATHGoogle Scholar
- [Du99L]Duff, M.: TASI Lectures on Branes, Black Holes and Anti-de Sitter Space. arXiv:hep-th/9912164
- [Du99B]Duff, M. (ed.): The World in Eleven Dimensions: Supergravity. Supermembranes and M-Theory. IoP, Bristol (1999)zbMATHGoogle Scholar
- [Du08]Duff, M.: Near-horizon brane-scan revived. Nucl. Phys. B810, 193–209 (2009). arXiv:0804.3675 ADSMathSciNetzbMATHGoogle Scholar
- [DIPSS88]Duff, M., Inami, T., Pope, C., Sezgin, E., Stelle, K.: Semiclassical quantization of the supermembrane. Nucl. Phys. B297, 515–538 (1988). spire:247064 ADSMathSciNetzbMATHGoogle Scholar
- [DKL95]Duff, M., Khuri, R., Lu, J.X.: String solitons. Phys. Rep. 259, 213–326 (1995). arXiv:hep-th/9412184 ADSMathSciNetGoogle Scholar
- [DuLu93]Duff, M., Lu, J.: Black and super \(p\)-branes in diverse dimensions. Nucl. Phys. B416, 301–334 (1994). arXiv:hep-th/9306052 ADSMathSciNetzbMATHGoogle Scholar
- [DuSu88]Duff, M., Sutton, C.: The membrane at the end of the universe. New Sci. 118, 67–71 (1988)Google Scholar
- [DHIS87]Duff, M., Howe, P., Inami, T., Stelle, K.: Superstrings in \(D =10\) from Supermembranes in \(D =11\). Phys. Lett. B191, 70–74 (1987). reprinted in [Du99] spire:245249 ADSMathSciNetzbMATHGoogle Scholar
- [DuLu92]Duff, M.J., Lu, J.X.: Type II p-branes: the brane-scan revisited. Nucl. Phys. B390, 276–290 (1993). arXiv:hep-th/9207060 ADSMathSciNetzbMATHGoogle Scholar
- [DuVal34]P. du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction, I, II and III, Proc. Camb. Phil. Soc. 30 1934, 453–459, 460–465, 483–491Google Scholar
- [EE12]Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity. J. Geom. Phys. 62, 53–60 (2012)ADSMathSciNetzbMATHGoogle Scholar
- [EGKRS00]Elitzur, S., Giveon, A., Kutasov, D., Rabinovici, E., Sarkissian, G.: D-branes in the background of NS fivebranes. J. High Energy Phys. 0008, 046 (2000). arXiv:hep-th/0005052 ADSMathSciNetzbMATHGoogle Scholar
- [El83]Elmendorf, A.: Systems of fixed point sets. Trans. Am. Math. Soc. 277, 275–284 (1983)MathSciNetzbMATHGoogle Scholar
- [EG73]Epstein, H., Glaser, V.: The Role of locality in perturbation theory. Annales Poincaré Phys. Theor. A 19, 211 (1973). http://www.numdam.org/item?id=AIHPA_1973__19_3_211_0
- [Evs06]Evslin, J.: What Does(n’t) K-theory Classify?, Second Modave Summer School in Mathematical Physics. arXiv:hep-th/0610328
- [EvSa06]Evslin, J., Sati, H.: Can D-branes wrap nonrepresentable cycles? J. High Energy Phys. 0610, 050 (2006). arXiv:hep-th/0607045 ADSMathSciNetGoogle Scholar
- [Fa17]Fazzi, M.: Higher-dimensional field theories from type II supergravity. arXiv:1712.04447
- [FF]Figueroa-O’Farrill, J.: Majorana spinors. http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf
- [FF98]Figueroa-O’Farrill, J.: Near-horizon geometries of supersymmetric branes, talk at SUSY98. arXiv:hep-th/9807149
- [FOS17]Figueroa-O’Farrill, J., Santi, A.: Spencer cohomology and eleven-dimensional supergravity. Commun. Math. Phys. 349, 627–660 (2017). arXiv:1511.08737 [hep-th]ADSzbMATHGoogle Scholar
- [FSS12]Fiorenza, D., Sati, H., Schreiber, U.: Multiple M5-branes, string 2-connections, and 7d nonabelian Chern-Simons theory. Adv. Theor. Math. Phys. 18, 229–321 (2014). arXiv:1201.5277 MathSciNetzbMATHGoogle Scholar
- [FSS13]Fiorenza, D., Sati, H., Schreiber, U.: Super Lie \(n\)-algebra extensions, higher WZW models, and super \(p\)-branes with tensor multiplet fields. Int. J. Geom. Methods Mod. Phys. 12, 1550018 (2015). arXiv:1308.5264 MathSciNetzbMATHGoogle Scholar
- [FSS16a]Fiorenza, D., Sati, H., Schreiber, U.: Rational sphere valued supercocycles in M-theory and type IIA string theory. J. Geom. Phys. 114, 91–108 (2017). arXiv:1606.03206 ADSMathSciNetzbMATHGoogle Scholar
- [FSS15b]Fiorenza, D., Sati, H., Schreiber, U.: The WZW term of the M5-brane and differential cohomotopy. J. Math. Phys. 56, 102301 (2015). arXiv:1506.07557 ADSMathSciNetzbMATHGoogle Scholar
- [FSS16b]Fiorenza, D., Sati, H., Schreiber, U.: T-Duality from super Lie \(n\)-algebra cocycles for super p-branes. Adv. Theor. Math. Phys. 22(5), (2018). arXiv:1611.06536
- [FSS17]Fiorenza, D., Sati, H., Schreiber, U.: T-duality in rational homotopy theory via \(L_{\infty }\)-algebras, Geom. Topol. Math. Phys. 1, (2018), special volume in tribute of Jim Stasheff and Dennis Sullivan. arXiv:1712.00758 [math-ph]
- [FSS18]Fiorenza, D., Sati, H., Schreiber, U.: Higher T-duality of M-branes. arXiv:1803.05634
- [FSS19]Fiorenza, D., Sati, H., Schreiber, U.: The rational higher structure of M-theory, Proceedings of Higher Structures in M-Theory, Durham Symposium 2018, Fortsch. Phys. (2019)Google Scholar
- [Fre00]Freed, D.: Dirac charge quantization and generalized differential cohomology, Surveys in Differential Geometry, Int. Press, Somerville, MA, pp. 129–194 (2000) arXiv:hep-th/0011220 MathSciNetzbMATHGoogle Scholar
- [FrWi99]Freed, D., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819–852 (1999). arXiv:hep-th/9907189 MathSciNetzbMATHGoogle Scholar
- [Ga97]Gauntlett, J.: Intersecting Branes, in Dualities in Gauge and String Theories, Proc. APCTP Winter School “Dualities of Gauge and String Theories”, Korea (1997). arXiv:hep-th/9705011
- [GKST01]Gorbatov, E., Kaplunovsky, V.S., Sonnenschein, J., Theisen, S., Yankielowicz, S.: On heterotic orbifolds, M theory and type I’ brane engineering. J. High Energy Phys. 0205, 015 (2002). arXiv:hep-th/0108135 ADSMathSciNetGoogle Scholar
- [GS18a]Grady, D., Sati, H.: Twisted differential generalized cohomology theories and their Atiyah-Hirzebruch spectral sequence, to appear in Alg. Geom. Top. arXiv:1711.06650 [math.AT]
- [GS18b]Grady, D., Sati, H.: Differential KO-theory: constructions, computations, and applications, [arXiv:1809.07059] [math.AT]
- [GS19]Grady, D., Sati, H.: Ramond-Ramond fields and twisted differential K-theory, preprintGoogle Scholar
- [Gue92]Gueven, R.: Black \(p\)-brane solutions of \(D = 11\) supergravity theory. Phys. Lett. B276, 49–55 (1992). (reprinted in [Du99B]) spire:338203 ADSMathSciNetGoogle Scholar
- [Gu65]Guillemin, V.: The integrability problem for \(G\)-structures. Trans. Am. Math. Soc. 116, 544–560 (1965). jstor:1994134 MathSciNetzbMATHGoogle Scholar
- [Guk99]Gukov, S.: K-theory, reality, and orientifolds. Commun. Math. Phys. 210, 621–639 (2000). arXiv:hep-th/9901042 ADSMathSciNetzbMATHGoogle Scholar
- [HIKLV15]Haghighat, B., Iqbal, A., Kozcaz, C., Lockhart, G., Vafa, C.: M-strings. Commun. Math. Phys. 334, 779–842 (2015). arXiv:1305.6322 ADSzbMATHGoogle Scholar
- [HK85]Han, S.K., Koh, I.G.: \(N=4\) remaining supersymmetry in Kaluza-Klein monopole background in \(\text{ D }=11\) supergravity theory. Phys. Rev. D31, 2503–2506 (1985)ADSMathSciNetGoogle Scholar
- [HaKo00]Hanany, A., Kol, B.: On orientifolds, discrete torsion, branes and M theory. J. High Energy Phys. 0006, 013 (2000). arXiv:hep-th/0003025 ADSMathSciNetzbMATHGoogle Scholar
- [HaMo99]Harvey, J., Moore, G.: Superpotentials and Membrane Instantons. arXiv:hep-th/9907026
- [HMV13]Heckman, J., Morrison, D., Vafa, C.: On the classification of 6D SCFTs and generalized ADE orbifolds. J. High Energ. Phys. 2014, 28 (2014). arXiv:1312.5746 Google Scholar
- [Hes06]Hess, K.: Rational homotopy theory: a brief introduction, Interactions between homotopy theory and algebra, 175–202. Contemp. Math 436 arXiv:math.AT/0604626
- [HHR09]Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016). arXiv:0908.3724 MathSciNetzbMATHGoogle Scholar
- [HI13]Hohenegger, S., Iqbal, A.: M-strings, Elliptic Genera and \(N=4\) String Amplitudes. arXiv:1310.1325
- [HoIs12]Hollands, S., Ishibashi, A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Gravity 29, 163001 (2012). arXiv:1206.1164 ADSMathSciNetzbMATHGoogle Scholar
- [HW95]Hořava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B460, 506–524 (1996). arXiv:hep-th/9510209 ADSMathSciNetzbMATHGoogle Scholar
- [HW96]Hořava, P., Witten, E.: Eleven dimensional supergravity on a manifold with boundary. Nucl. Phys. B475, 94–114 (1996). arXiv:hep-th/9603142 ADSMathSciNetzbMATHGoogle Scholar
- [Hor97]Hori, K.: Consistency conditions for fivebrane in M theory on \({\mathbb{R}}^5/{\mathbb{Z}}_2\) orbifold. Nucl. Phys. B539, 35–78 (1999). arXiv:hep-th/9805141 ADSGoogle Scholar
- [Hor99]Hori, K.: D-branes, T-duality, and index theory. Adv. Theor. Math. Phys. 3, 281–342 (1999). arXiv:hep-th/9902102 MathSciNetzbMATHGoogle Scholar
- [Ho97]Howe, P.: Weyl superspace. Phys. Lett. B 415, 149–155 (1997). arXiv:hep-th/9707184 ADSMathSciNetGoogle Scholar
- [HuKr01]Hu, P., Kriz, I.: Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence. Topology 40, 317–399 (2001)MathSciNetzbMATHGoogle Scholar
- [HS17]Huerta, J., Schreiber, U.: M-theory from the superpoint. Lett. Math. Phys. 108, 2695–2727 (2018). arXiv:1702.01774 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- [Hul84]Hull, C.: Exact pp wave solutions of eleven-dimensional supergravity. Phys. Lett. B 139, 39–41 (1984). spire:14499 ADSGoogle Scholar
- [IU12]Ibáñez, L., Uranga, A.: String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
- [Kas00]Kashima, K.: The M2-brane solution of heterotic M-theory with the Gauss-Bonnet \(R^{2}\) terms. Prog. Theor. Phys. 105, 301–321 (2001). arXiv:hep-th/0010286 ADSzbMATHGoogle Scholar
- [Kee03]Keenan, A.: Which finite groups act freely on spheres? (2003) www.math.utah.edu/~keenan/actions.pdf
- [KKLPV14]Kim, J., Kim, S., Lee, K., Park, J., Vafa, C.: Elliptic genus of E-strings. J. High Energy Phys. 1709, 098 (2017). arXiv:1411.2324 ADSMathSciNetzbMATHGoogle Scholar
- [Klein1872]Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen (1872), translation by Haskell, M.W.: A comparative review of recent researches in geometry. Bull. N. Y. Math. Soc. 2, 215–249 (1892–1893)Google Scholar
- [Klein1884]Klein, F.: Vorlesungen uber das Ikosaeder und die Auflösung der Gleichungen vom funften Grade, 1884, translated as Lectures on the Icosahedron and the Resolution of Equations of Degree Five by George Morrice (1888). archive.org/details/cu31924059413439
- [KS05]Kriz, I., Sati, H.: Type IIB string theory, S-duality, and generalized cohomology. Nucl. Phys. B715, 639–664 (2005). arXiv:hep-th/0410293 ADSMathSciNetzbMATHGoogle Scholar
- [KuTo82]Kugo, T., Townsend, P.: Supersymmetry and the division algebras. Nucl. Phys. B 221, 357–380 (1982). spire:181889 ADSMathSciNetGoogle Scholar
- [LLO97]Lalak, Z., Lukas, A., Ovrut, B.: Soliton solutions of M-theory on an orbifold. Phys. Lett. B425, 59–70 (1998). arXiv:hep-th/9709214 ADSMathSciNetGoogle Scholar
- [Lot90]Lott, J.: The geometry of supergravity torsion constraints. Commun. Math. Phys. 133, 563–615 (1990). see arXiv:math/0108125 ADSzbMATHGoogle Scholar
- [Lu09-]Lurie, J.: Higher Topos Theory, [arXiv:math/0608040], Higher Algebra [www.math.harvard.edu/~lurie/papers/HA.pdf], Spectral Algebraic Geometry. www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf
- [MaS04]Mathai, V., Sati, H.: Some relations between twisted K-theory and \(E_8\) gauge theory. J. High Energy Phys. 03, 016 (2004). arXiv:hep-th/0312033 ADSGoogle Scholar
- [May+96]May, J.P. ed., Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Conference Board of the Mathematical Sciences, Washington, DC (1996)Google Scholar
- [Maz01]Mazur, P.O.: Black Uniqueness Theorems, In: MacCallum, M.A.H. (ed.) Proceedings of the 11th International Conference on General Relativity and Gravitation, Cambridge University Press, pp. 130–157 (1987). arXiv:hep-th/0101012
- [MBD1916]Miller, G.A., Blichfeldt, H.F., Dickson, L.E.: Theory and Applications of Finite Groups. Dover, New York (1916)zbMATHGoogle Scholar
- [MooreStrings2014]Moore, G.: Physical Mathematics and the Future, talk at Strings (2014). http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf
- [MoWi00]Moore, G., Witten, E.: Self-duality, Ramond–Ramond fields, and K-theory. J. High Energy Phys. 0005, 032 (2000). arXiv:hep-th/9912279 ADSMathSciNetzbMATHGoogle Scholar
- [MP99]Morrison, D.R., Plesser, M.R.: Non-spherical horizons I. Adv. Theor. Math. Phys. 3, 1–81 (1999). arXiv:hep-th/9810201 MathSciNetzbMATHGoogle Scholar
- [vN82]van Nieuwenhuizen, P.: Free Graded Differential Superalgebras, In: Istanbul 1982, Proceedings, Group Theoretical Methods In Physics, pp. 228–247. 182644
- [PST99]Pasti, P., Sorokin, D., Tonin, M.: Branes in Super-AdS Backgrounds and Superconformal Theories, Talk at Supersymmetry and Quantum Symmetries, JINR (1999). arXiv:hep-th/9912076
- [Ph05]Philip, S.: Plane-wave limits and homogeneous M-theory backgrounds (2005). https://www.era.lib.ed.ac.uk/bitstream/handle/1842/15645/Philip2005.Pdf?sequence=1
- [Qu69]Quillen, D.: Rational homotopy theory. Ann. Math. (2) 90, 205–295 (1969)MathSciNetzbMATHGoogle Scholar
- [Ra03]Ravenel, D.: Complex cobordism and stable homotopy groups of spheres, AMS (2003). http://web.math.rochester.edu/people/faculty/doug/mu.html
- [Re87]Reid, M.: Young person’s guide to canonical singularities, In: Bloch, S. (ed.), Algebraic geometry – Bowdoin 1985, Part 1, Proc. Sympos. Pure Math. 46 Part 1, American Mathematical Society, Providence, RI, pp. 345–414 (1987)Google Scholar
- [Ree05]Rees, E.: Notes on Geometry. Springer, Berlin (2005)Google Scholar
- [Sa05a]Sati, H.: M-theory and characteristic classes. J. High Energy Phys. 0508, 020 (2005). arXiv:hep-th/0501245 ADSMathSciNetGoogle Scholar
- [Sa05b]Sati, H.: Flux quantization and the M-theoretic characters. Nucl. Phys. B727, 461–470 (2005). arXiv:hep-th/0507106 ADSMathSciNetzbMATHGoogle Scholar
- [Sa06]Sati, H.: Duality symmetry and the form fields of M-theory. J. High Energy Phys. 0606, 062 (2006). arXiv:hep-th/0509046 ADSMathSciNetGoogle Scholar
- [Sa09]Sati, H.: A higher twist in string theory. J. Geom. Phys. 59(3), 369–373 (2009). arXiv:hep-th/0701232 ADSMathSciNetzbMATHGoogle Scholar
- [Sa10]Sati, H.: Geometric and topological structures related to M-branes, Superstrings, geometry, topology, and \(C^{*}\)-algebras, 181-236, Proc. Sympos. Pure Math., 81, Amer. Math. Soc., Providence, RI, (2010). arXiv:1001.5020 [math.DG]
- [Sa11]Sati, H.: Topological aspects of the NS5-brane. arXiv:1109.4834 [hep-th]
- [Sa13]Sati, H.: Framed M-branes, corners, and topological invariants. J. Math. Phys. 59, 062304 (2018). arXiv:1310.1060 [hepth]ADSMathSciNetzbMATHGoogle Scholar
- [SS11]Sati, H., Schreiber, U.: Survey of mathematical foundations of QFT and perturbative string theory, Introduction to Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Amer. Math. Soc., Providence, RI, (2011). arXiv:1109.0955 [math-ph]
- [SS18]Sati, H., Schreiber, U.: Higher T-duality of M-branes via local supersymmetry. Phys. Lett. B 781, 694–698 (2018). arXiv:1805.00233 [hep-th]ADSzbMATHGoogle Scholar
- [ScSc95]Schmidt, M.G., Schubert, C.: The Worldline Path Integral Approach to Feynman Graphs. arXiv:hep-ph/9412358
- [Sch13]Schreiber, U.: Differential cohomology in a cohesive \(\infty \)-topos. https://ncatlab.org/schreiber/files/dcct170811.pdf
- [Sch15]Schreiber, U.: Higher Cartan Geometry, lecture notes, Prague (2015). https://ncatlab.org/schreiber/show/Higher+Cartan+Geometry
- [Sch16]Schreiber, U.: Fundamental super \(p\)-Branes, lectures at: Sati, H. (org.), Flavors of Cohomology, Pittsburgh (2015). https://ncatlab.org/nlab/show/geometry+of+physics+--+fundamental+super+p-branes
- [Sch17a]Schreiber, U.: Introduction to Topology, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Topology
- [Sch17b]Schreiber, U.: Introduction to Homotopy Theory, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory
- [Sch17c]Schreiber, U.: Introduction to Stable Homotopy Theory, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1
- [Sch17d]Schreiber, U.: Introduction to Stable Homotopy Theory— Examples and Application, lecture notes, Bonn (2017). https://ncatlab.org/nlab/show/Introduction+to+Cobordism+and+Complex+Oriented+Cohomology
- [Sch18]Schreiber, U.: Perturbative Quantum Field Theory, lecture notes, Hamburg (2018). https://ncatlab.org/nlab/show/geometry+of+physics+--+perturbative+quantum+field+theory
- [Sch96]Schubert, C.: An introduction to the worldline technique for quantum field theory calculations. Acta Phys. Pol. B27, 3965–4001 (1996). arXiv:hep-th/9610108 Google Scholar
- [Scu01]Scull, L.: Rational \(S^1\)-equivariant homotopy theory. Trans. Am. Math. Soc. 354, 1–45 (2001). (pdf)MathSciNetzbMATHGoogle Scholar
- [Sen97]Sen, A.: A note on enhanced gauge symmetries in M- and string theory. J. High Energy Phys. 9709, 001 (1997). arXiv:hep-th/9707123 ADSMathSciNetGoogle Scholar
- [Ser14]Serrano, J.: Finite subgroups of \(SL(2,{\mathbb{C}})\) and \(SL(3,{\mathbb{C}})\), Warwick (2014). https://homepages.warwick.ac.uk/~masda/McKay/CarrascoProject.pdf
- [Sh17]Shulman, M.: Homotopy type theory: the logic of space, In: Catren, G., Anel, M. New Spaces for Mathematics and Physics. arXiv:1703.03007
- [Slo80]Slodowy, P.: Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics 815. Springer, Berlin (1980)zbMATHGoogle Scholar
- [Sor99]Sorokin, D.: Superbranes and superembeddings. Phys. Rep. 329, 1–101 (2000). arXiv:hep-th/9906142 ADSMathSciNetzbMATHGoogle Scholar
- [Sor01]Sorokin, D.: Introduction to the superembedding description of superbranes. AIP Conf. Proc. 589, 98 (2001). arXiv:hep-th/0105102 ADSGoogle Scholar
- [Spa49]Spanier, E.: Borsuk’s cohomotopy groups. Ann. Math. 50, 203–245 (1949). jstor:1969362 MathSciNetzbMATHGoogle Scholar
- [Str96]Strominger, A.: Open P-branes. Phys. Lett. B 383, 44–47 (1996). arXiv:hep-th/9512059 ADSMathSciNetzbMATHGoogle Scholar
- [Su77]Sullivan, D.: Infinitesimal computations in topology. Publ. Math. de I.H.É.S. 47, 269–331 (1977)MathSciNetzbMATHGoogle Scholar
- [Sus05]Suslov, I.M.: Divergent perturbation series. J. Exp. Theor. Phys. 100, 1188 (2005). arXiv:hep-ph/0510142 ADSGoogle Scholar
- [To95]Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–187 (1995). arXiv:hep-th/9501068 ADSMathSciNetGoogle Scholar
- [Wan80]Waner, S.: Equivariant homotopy theory and Milnor’s theorem. Trans. Am. Math. Soc. 258, 351–368 (1980). jstor:1998061 MathSciNetzbMATHGoogle Scholar
- [Wa89]Wang, M.Y.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7(1), 59–68 (1989)MathSciNetzbMATHGoogle Scholar
- [We17]Wellen, F.: Formalizing Cartan Geometry in Modal Homotopy Type Theory, PhD Thesis, KIT (2017). ncatlab.org/schreiber/show/thesis+Wellen
- [Wi95a]Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B443, 85–126 (1995). arXiv:hep-th/9503124 ADSMathSciNetzbMATHGoogle Scholar
- [Wi95b]Witten, E.: Some Comments On String Dynamics, In: Bars, I. et. al, (eds.) Proceedings of String95. arXiv:hep-th/9507121
- [Wi95c]Witten, E.: Five-branes and M-theory on an orbifold. Nucl. Phys. B 463, 383–397 (1996). arXiv:hep-th/9512219 ADSMathSciNetzbMATHGoogle Scholar
- [Wi98]Witten, E.: D-branes and K-theory. J. High Energy Phys. 12, 019 (1998). arXiv:hep-th/9810188 ADSzbMATHGoogle Scholar
- [Wi02]Witten, E.: Singularities in string theory, Proceedings of the ICM, Beijing 1, 495–504 (2002). arXiv:hep-th/0212349
- [Wi03]Witten, E.: Viewpoints on String Theory, NOVA interview (2003). www.pbs.org/wgbh/nova/elegant/view-witten.html
- [Wi15]Witten, E.: What every physicist should know about string theory, talk at Strings2015 strings2015.icts.res.in/talkDocuments/26-06-2015-Edward-Witten.pdf