Skip to main content
Log in

Choptuik’s Critical Spacetime Exists

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

About 25 years ago, Choptuik studied numerically the gravitational collapse (Einstein field equations) of a massless scalar field in spherical symmetry, and found strong evidence for a universal, discretely self-similar solution at the threshold of black hole formation. We prove rigorously the existence of a real analytic solution, which we interpret as the solution observed by Choptuik. Using a Fourier-Chebyshev expansion, we find that an important linear differential operator has compact inverse. This is reminiscent of an elliptic operator and explains the real analyticity. Our construction covers an open neighborhood of the past light cone of the singularity. The proof is computer-assisted. Starting from an explicit approximate solution, we show that nearby there is a true solution. We include the complete C source code and a high precision data file with about 80 significant decimal digits (Online Resource), with rigorous error bounds. All computer calculations use integer arithmetic only. We do not study perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arioli G., Koch H.: The critical renormalization fixed point for commuting pairs of area-preserving maps. Commun. Math. Phys. 295, 415–429 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bizoń P., Chmaj T., Schmidt B.G.: Critical behavior in vacuum gravitational collapse in 4+1 dimensions. Phys. Rev. Lett. 95, 071102 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bizoń P., Chmaj T., Schmidt B.G.: Codimension-two critical behavior in vacuum gravitational collapse. Phys. Rev. Lett. 97, 131101 (2006)

    Article  ADS  Google Scholar 

  4. Choptuik M.W.: Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 70, 9–12 (1993)

    Article  ADS  Google Scholar 

  5. Choptuik, M.W.: datafile ph0mtau provided on his academic webpage

  6. Choptuik M.W., Hirschmann E.W., Liebling S.L., Pretorius F.: Critical collapse of the massless scalar field in axisymmetry. Phys. Rev. D. 68(044007), 1–9 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Christodoulou D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Christodoulou D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 44, 339–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christodoulou D.: Bounded variation solutions of the spherically symmetric einsteinscalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1993)

    Article  MATH  Google Scholar 

  10. Christodoulou D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 140, 607–653 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gundlach C., Martín-García J.M.: Critical phenomena in gravitational collapse. Living Rev. Relativ. 10, 5 (2007)

    Article  MATH  ADS  Google Scholar 

  12. Gundlach C.: Understanding critical collapse of a scalar field. Phys. Rev. D. 55, 695–713 (1997)

    Article  ADS  Google Scholar 

  13. Lanford O.E.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Am. Math. Soc. 6, 427–434 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martín-García J.M., Gundlach C.: Global structure of Choptuik’s critical solution in scalar field collapse. Phys. Rev. D 68(024011), 1–25 (2003)

    MathSciNet  Google Scholar 

  15. Martín-García J.M., Gundlach C.: All nonspherical perturbations of the Choptuik spacetime decay. Phys. Rev. D 59(064031), 1–19 (1999)

    MathSciNet  Google Scholar 

  16. Reiterer, M.: Finite codimension stability of some time-periodic hyperbolic equations (via compact resolvents). arXiv:1510.05310

  17. Reiterer, M., Trubowitz, E.: The graded Lie algebra of general relativity. arXiv:1412.5561

  18. Sternberg S.: Local contractions and a theorem of Poincare. Am. J. Math. 79, 809–824 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out while the authors were visiting NYU Abu Dhabi, in fall 2011. We thank the three anonymous referees for useful suggestions that we have tried to incorporate in the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Reiterer.

Additional information

Communicated by P. Chrusciel

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GZ 594,691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiterer, M., Trubowitz, E. Choptuik’s Critical Spacetime Exists. Commun. Math. Phys. 368, 143–186 (2019). https://doi.org/10.1007/s00220-019-03413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03413-8

Navigation