Abstract
We consider mixed quasi-free states describing N fermions in the mean-field limit. In this regime, the time evolution is governed by the nonlinear Hartree equation. In the large N limit, we study the convergence towards the classical Vlasov equation. Under integrability and regularity assumptions on the initial state, we prove strong convergence in trace and Hilbert–Schmidt norm and provide explicit bounds on the convergence rate for a class of singular potentials of the form \({V(x)=|x|^{-\alpha}}\) , for \({\alpha\in(0,1/2)}\) .
Similar content being viewed by others
References
Amour L., Khodja M., Nourrigat J.: The semiclassical l imit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)
Amour L., Khodja M., Nourrigat J.: The classical limit of the Heisenberg and time dependent Hartree–Fock equations: the Wick symbol of the solution. Math. Res. Lett. 20(1), 119–139 (2013)
Athanassoulis A., Paul T., Pezzotti F., Pulvirenti M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)
Bardos C., Degond P.: Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)
Benedikter N., Jaksic V., Porta M., Saffirio C., Schlein B.: Mean-field Evolution of Fermionic Mixed States. Commun. Pure Appl. Math. 69, 2250–2303 (2016)
Benedikter N., Porta M., Saffirio C., Schlein B.: From the Hartree–Fock dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)
Benedikter N., Porta M., Schlein B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)
Dobrushin R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)
Desvillettes L., Miot E., Saffirio C.: Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge. Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 32(2), 373–400 (2015)
Elgart A., Erdős L., Schlein B., Yau H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)
Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics, 19. American Mathematical Society, Providence (1998)
Fefferman Ch.L., de la Llave R.: Relativistic stability of matter–I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)
Figalli A., Ligabò M., Paul T.: Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61(1), 193–222 (2012)
Gasser I., Illner R., Markowich P.A., Schmeiser C.: Semiclassical, \({t \to \infty}\) asymptotics and dispersive effects for HF systems. Math. Modell. Numer. Anal. 32, 699–713 (1998)
Golse, F.: Mean field kinetic equations (2013). http://www.cmls.polytechnique.fr/perso/golse/M2/PolyKinetic.pdf
Golse F., Paul T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223, 57–94 (2017)
Golse, F., Paul, T.: Empirical measures and quantum mechanics: applications to the mean-field limit. arXiv:1711.08350
Golse, F., Pulvirenti, M., Paul, T.: On the derivation of the hartree equation in the mean field limit: uniformity in the planck constant. J. Funct. Anal. (To appear)
Graffi S., Martinez A., Pulvirenti M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(1), 59–73 (2003)
Hainzl C., Seiringer R.: General decomposition of radial functions on \({\mathbb{R}^n}\) and applications to N-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)
Holding, T., Miot, E.: Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces. arXiv:1703.03046v1
Iordanskii S.V.: The Cauchy problem for the kinetic equation of plasma. Trudy Mat. Inst. Steklov. 60, 181–194 (1961)
Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics AMS, vol. 12 (1996)
Lieb E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)
Lieb, E.H., Loss, M.: Analysis: second edition. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001). ISBN: 0-8218-2783-9
Lieb E.H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)
Lions P.-L., Paul T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)
Lions P.-L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)
Loeper G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68–79 (2006)
Markowich P.A., Mauser N.J.: The classical limit of a self-consistent quantum Vlasov equation. Math. Models Methods Appl. Sci. 3(1), 109–124 (1993)
Miot E.: A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system. Commun. Math. Phys. 345(2), 469–482 (2016)
Narnhofer H., Sewell G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)
Okabe S., Ukai T.: On classical solutions in the large in time of the two-dimensional Vlasov equation. Osaka J. Math. 15, 245–261 (1978)
Pallard C.: Moment propagation for weak solutions to the Vlasov–Poisson system. Commun. Partial Differ. Equ. 37(7), 1273–1285 (2012)
Pezzotti F., Pulvirenti M.: Mean-field limit and semiclassical expansion of a quantum particle system. Ann. H. Poincaré 10(1), 145–187 (2009)
Pfaffelmoser K.: Global existence of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)
Porta M., Rademacher S., Saffirio C., Schlein B.: Mean field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166, 1345–1364 (2017)
Saffirio, C.: Mean-field evolution of fermions with singular interaction. In: Cadamuro D., Duell M., Dybalski W., Simonella S. (eds.) Macroscopic limits of quantum systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol. 270, pp. 81–89. Springer, Cham (2018)
Saffirio, C.: In preparation
Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb. (4) 46, 471–497 (1938) (translated into English in Transl. Amer. Math. Soc. 34, 39–68)
Spohn H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)
Acknowledgements
The author is supported by the Grant SNSF Ambizione PZ00P2_161287/1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saffirio, C. Semiclassical Limit to the Vlasov Equation with Inverse Power Law Potentials. Commun. Math. Phys. 373, 571–619 (2020). https://doi.org/10.1007/s00220-019-03397-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-019-03397-5