Semiclassical Limit to the Vlasov Equation with Inverse Power Law Potentials

  • Chiara SaffirioEmail author


We consider mixed quasi-free states describing N fermions in the mean-field limit. In this regime, the time evolution is governed by the nonlinear Hartree equation. In the large N limit, we study the convergence towards the classical Vlasov equation. Under integrability and regularity assumptions on the initial state, we prove strong convergence in trace and Hilbert–Schmidt norm and provide explicit bounds on the convergence rate for a class of singular potentials of the form \({V(x)=|x|^{-\alpha}}\) , for \({\alpha\in(0,1/2)}\) .


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is supported by the Grant SNSF Ambizione PZ00P2_161287/1.


  1. 1.
    Amour L., Khodja M., Nourrigat J.: The semiclassical l imit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amour L., Khodja M., Nourrigat J.: The classical limit of the Heisenberg and time dependent Hartree–Fock equations: the Wick symbol of the solution. Math. Res. Lett. 20(1), 119–139 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Athanassoulis A., Paul T., Pezzotti F., Pulvirenti M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bardos C., Degond P.: Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Benedikter N., Jaksic V., Porta M., Saffirio C., Schlein B.: Mean-field Evolution of Fermionic Mixed States. Commun. Pure Appl. Math. 69, 2250–2303 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benedikter N., Porta M., Saffirio C., Schlein B.: From the Hartree–Fock dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benedikter N., Porta M., Schlein B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dobrushin R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)CrossRefzbMATHGoogle Scholar
  9. 9.
    Desvillettes L., Miot E., Saffirio C.: Polynomial propagation of moments and global existence for a Vlasov–Poisson system with a point charge. Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 32(2), 373–400 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Elgart A., Erdős L., Schlein B., Yau H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics, 19. American Mathematical Society, Providence (1998)Google Scholar
  12. 12.
    Fefferman Ch.L., de la Llave R.: Relativistic stability of matter–I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Figalli A., Ligabò M., Paul T.: Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61(1), 193–222 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gasser I., Illner R., Markowich P.A., Schmeiser C.: Semiclassical, \({t \to \infty}\) asymptotics and dispersive effects for HF systems. Math. Modell. Numer. Anal. 32, 699–713 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    Golse, F.: Mean field kinetic equations (2013).
  16. 16.
    Golse F., Paul T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223, 57–94 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Golse, F., Paul, T.: Empirical measures and quantum mechanics: applications to the mean-field limit. arXiv:1711.08350
  18. 18.
    Golse, F., Pulvirenti, M., Paul, T.: On the derivation of the hartree equation in the mean field limit: uniformity in the planck constant. J. Funct. Anal. (To appear)Google Scholar
  19. 19.
    Graffi S., Martinez A., Pulvirenti M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(1), 59–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hainzl C., Seiringer R.: General decomposition of radial functions on \({\mathbb{R}^n}\) and applications to N-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Holding, T., Miot, E.: Uniqueness and stability for the Vlasov–Poisson system with spatial density in Orlicz spaces. arXiv:1703.03046v1
  22. 22.
    Iordanskii S.V.: The Cauchy problem for the kinetic equation of plasma. Trudy Mat. Inst. Steklov. 60, 181–194 (1961)MathSciNetGoogle Scholar
  23. 23.
    Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics AMS, vol. 12 (1996)Google Scholar
  24. 24.
    Lieb E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lieb, E.H., Loss, M.: Analysis: second edition. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001). ISBN: 0-8218-2783-9Google Scholar
  26. 26.
    Lieb E.H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lions P.-L., Paul T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lions P.-L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Loeper G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68–79 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Markowich P.A., Mauser N.J.: The classical limit of a self-consistent quantum Vlasov equation. Math. Models Methods Appl. Sci. 3(1), 109–124 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Miot E.: A uniqueness criterion for unbounded solutions to the Vlasov–Poisson system. Commun. Math. Phys. 345(2), 469–482 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Narnhofer H., Sewell G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Okabe S., Ukai T.: On classical solutions in the large in time of the two-dimensional Vlasov equation. Osaka J. Math. 15, 245–261 (1978)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Pallard C.: Moment propagation for weak solutions to the Vlasov–Poisson system. Commun. Partial Differ. Equ. 37(7), 1273–1285 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Pezzotti F., Pulvirenti M.: Mean-field limit and semiclassical expansion of a quantum particle system. Ann. H. Poincaré 10(1), 145–187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Pfaffelmoser K.: Global existence of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Porta M., Rademacher S., Saffirio C., Schlein B.: Mean field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166, 1345–1364 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Saffirio, C.: Mean-field evolution of fermions with singular interaction. In: Cadamuro D., Duell M., Dybalski W., Simonella S. (eds.) Macroscopic limits of quantum systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol. 270, pp. 81–89. Springer, Cham (2018)Google Scholar
  39. 39.
    Saffirio, C.: In preparationGoogle Scholar
  40. 40.
    Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb. (4) 46, 471–497 (1938) (translated into English in Transl. Amer. Math. Soc. 34, 39–68)Google Scholar
  41. 41.
    Spohn H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of ZürichZurichSwitzerland

Personalised recommendations