Skip to main content
Log in

Locality from the Spectrum

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Essential to the description of a quantum system are its local degrees of freedom, which enable the interpretation of subsystems and dynamics in the Hilbert space. While a choice of local tensor factorization of the Hilbert space is often implicit in the writing of a Hamiltonian or Lagrangian, the identification of local tensor factors is not intrinsic to the Hilbert space itself. Instead, the only basis-invariant data of a Hamiltonian is its spectrum, which does not manifestly determine the local structure. This ambiguity is highlighted by the existence of dualities, in which the same energy spectrum may describe two systems with very different local degrees of freedom. We argue that in fact, the energy spectrum alone almost always encodes a unique description of local degrees of freedom when such a description exists, allowing one to explicitly identify local subsystems and how they interact. As a consequence, we can almost always write a Hamiltonian in its local presentation given only its spectrum. In special cases, multiple dual local descriptions can be extracted from a given spectrum, but generically the local description is unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlosshauer M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267 (2005)

    Article  ADS  Google Scholar 

  2. Piazza F.: Glimmers of a pre-geometric perspective. Found. Phys. 40(3), 239–266 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Tegmark M.: Consciousness as a state of matter. Chaos Solitons Fractals 76, 238–270 (2015)

    Article  ADS  MATH  Google Scholar 

  4. Wallace D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  5. Zanardi P., Lidar D.A., Lloyd S.: Quantum tensor product structures are observable induced. Phys. Rev. Lett. 92(6), 060402 (2004)

    Article  ADS  Google Scholar 

  6. Giddings S.B.: Hilbert space structure in quantum gravity: an algebraic perspective. J. High Energy Phys. 2015(12), 99 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donnelly W., Giddings S.B.: Diffeomorphism-invariant observables and their nonlocal algebra. Phys. Rev. D 93(2), 024030 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, 3rd edition, Springer (1994)

  9. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (2013)

  10. Chen X., Chu M.T.: On the least squares solution of inverse eigenvalue problems. SIAM J. Numer. Anal. 33(6), 2417–2430 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haag R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Bravyi, S., Kitaev, A.: Fermionic quantum computation. arXiv preprint arXiv:quant-ph/0003137 (2000)

  13. Riedel C.J., Zurek W.H., Zwolak M.: Objective past of a quantum universe: redundant records of consistent histories. Phys. Rev. A 93(3), 032126 (2016)

    Article  ADS  Google Scholar 

  14. Riedel, C.J.: Classical branch structure from spatial redundancy in a many-body wavefunction (2016). arXiv:1608.05377

  15. Zurek W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Schlosshauer M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267 (2005)

    Article  ADS  Google Scholar 

  17. Qi, X.-L.: Exact holographic mapping and emergent space–time geometry. arXiv:1309.6282 (2013)

  18. Cao, C., Carroll, S.M., Michalakis, S.: Space from Hilbert space: recovering geometry from bulk entanglement. arXiv:1606.08444 (2016)

  19. Cubitt, T., Montanaro, A., Piddock, S.: Universal quantum Hamiltonians. arXiv:1701.05182 (2017)

  20. Aaronson, S: The complexity of quantum states and transformations: from quantum money to black holes. arXiv:1607.05256 (2016)

  21. Brown, A.R., Susskind, L., Zhao, Y.: Quantum complexity and negative curvature. arXiv:1608.02612 (2016)

  22. Brown, A.R., Susskind, L.: The second law of quantum complexity. arXiv:1701.01107 (2017)

  23. Maldacena, J.: The large N limit of superconformal field theories and supergravity. In: Gamboa Saravi R.E., Falomir H., Schaposnik F.A. (eds.) AIP Conference Proceedings CONF-981170, vol. 484, no. 1. AIP (1999)

  24. Witten, E.: Anti de Sitter space and holography. arXiv preprint arXiv:hep-th/9802150 (1998)

  25. Almheiri, A., Dong, X., Harlow, D.: Bulk locality and quantum error correction in AdS/CFT. arXiv:1411.7041 (2014)

  26. Pastawski, F., et al.: Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. arXiv:1503.06237 (2015)

  27. Kitaev, A.: “A simple model of quantum holography.” http://online.kitp.ucsb.edu/online/entangled15/kitaev/, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ Talks at KITP, 7 April 2015 and 27 May 2015

  28. Maldacena J., Stanford D.: Remarks on the Sachdev–Ye–Kitaev model. Phys. Rev. D 94(10), 106002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Maldacena J., Stanford D., Yang Z.: Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space. Prog. Theor. Exp. Phys. 2016(12), 12C104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cotler, J.S., et al.: Black holes and random matrices. arXiv:1611.04650 (2016)

  31. García-García, A.M., Jacobus, J.M.V.: Analytical spectral density of the Sachdev–Ye–Kitaev model at finite N. arXiv:1701.06593 (2017)

Download references

Acknowledgements

We would like to thank Daniel Bump, Dylan Butson, Emilio Cobanera, Benjamin Lim, Edward Mazenc, Xiao-Liang Qi, Semon Rezchikov, Leonard Susskind, Arnav Tripathy, Ravi Vakil, and Michael Walter for their valuable discussions and support. We are also especially grateful to Patrick Hayden and Frances Kirwan for their valuable insights and feedback, and for reviewing this manuscript. JC is supported by the Fannie and John Hertz Foundation and the Stanford Graduate Fellowship program. DR is supported by the Stanford Graduate Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan S. Cotler.

Additional information

Communicated by M. M. Wolf

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotler, J.S., Penington, G.R. & Ranard, D.H. Locality from the Spectrum. Commun. Math. Phys. 368, 1267–1296 (2019). https://doi.org/10.1007/s00220-019-03376-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03376-w

Navigation