Albi G., Balagué D., Carrillo J.A., von Brecht J.: Stability analysis of flock and mill rings for second order models in swarming. SIAM J. Appl. Math. 74, 794–818 (2014)
MathSciNet
MATH
Google Scholar
Ambrosio L., Gigli N., Savaré G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel (2005)
MATH
Google Scholar
Balagué D., Carrillo J.A., Laurent T., Raoul G.: Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209, 1055–1088 (2013)
MathSciNet
MATH
Google Scholar
Balogh F., Merzi D.: Equilibrium measures for a class of potentials with discrete rotational symmetries. Constr. Approx. 42, 399–424 (2015)
MathSciNet
MATH
Google Scholar
Bertozzi A.L., Kolokolnikov T., Sun H., Uminsky D., von Brecht J.: Ring patterns and their bifurcations in a nonlocal model of biological swarms. Commun. Math. Sci. 13, 955–985 (2015)
MathSciNet
MATH
Google Scholar
Bertozzi, A.L., Laurent, T., Léger, F.: Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22, 1140005, 39pp (2012)
MathSciNet
MATH
Google Scholar
Blanchet, A., Carlier, G.: From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20130398, 11pp (2014)
ADS
MathSciNet
MATH
Google Scholar
Bleher P.M., Delvaux S., Kuijlaars A.B.J.: Random matrix model with external source and a constrained vector equilibrium problem. Comm. Pure Appl. Math. 64, 116–160 (2011)
MathSciNet
MATH
Google Scholar
Bleher P.M., Kuijlaars A.B.J.: Orthogonal polynomials in the normal matrix model with a cubic potential. Adv. Math. 230, 1272–1321 (2012)
MathSciNet
MATH
Google Scholar
Brézis H., Kinderlehrer D.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1974)
MathSciNet
MATH
Google Scholar
Burbea J.: Motions of vortex patches. Lett. Math. Phys. 6, 1–16 (1982)
ADS
MathSciNet
MATH
Google Scholar
Caffarelli L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4, 383–402 (1998)
MathSciNet
MATH
Google Scholar
Caffarelli L.A., Friedman A.: A singular perturbation problem for semiconductors. Boll. Un. Mat. Ital. B (7) 1, 409–421 (1987)
MathSciNet
MATH
Google Scholar
Caffarelli L.A., Vázquez J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)
MathSciNet
MATH
Google Scholar
Caffarelli L.A., Vázquez J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29, 1393–1404 (2011)
MathSciNet
MATH
Google Scholar
Cañizo J.A., Carrillo J.A., Patacchini F.S.: Existence of compactly supported global minimisers for the interaction energy. Arch. Ration. Mech. Anal. 217, 1197–1217 (2015)
MathSciNet
MATH
Google Scholar
Carrillo, J.A., Castorina, D., Volzone, B.: Ground states for diffusion dominated free energies with logarithmic interaction. SIAM J. Math. Anal. 47, 1–25 (2015)
MathSciNet
MATH
Google Scholar
Carrillo J.A., Delgadino M.G., Mellet A.: Regularity of local minimizers of the interaction energy via obstacle problems. Commun. Math. Phys. 343, 747–781 (2016)
ADS
MathSciNet
MATH
Google Scholar
Carrillo J.A., Figalli A., Patacchini F.S.: Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. Inst. H. Poincaré Anal. Nonlinear 34, 1299–1308 (2017)
ADS
MathSciNet
MATH
Google Scholar
Carrillo J.A., Huang Y.: Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinet. Relat. Models. 10, 171–192 (2017)
MathSciNet
MATH
Google Scholar
Carrillo J.A., McCann R.J., Villani C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 971–1018 (2003)
MathSciNet
MATH
Google Scholar
Carrillo, J.A., Vázquez, J.L.: Some free boundary problems involving non-local diffusion and aggregation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 373, 20140275, 16pp (2015)
ADS
MathSciNet
MATH
Google Scholar
Dal Maso G.: An Introduction to \({\Gamma}\)-Convergence. Birkhäuser, Boston (1993)
MATH
Google Scholar
D’Orsogna, M.R., Chuang, Y.-L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302, 4pp (2006)
Flierl G.R., Polvani L.M: Generalized Kirchhoff vortices. Phys. Fluids 29, 2376–2379 (1986)
ADS
MATH
Google Scholar
Frostman O.: Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel. Lunds Univ. Mat. Sem. 3, 1–118 (1935)
MATH
Google Scholar
Geers M.G.D., Peerlings R.H.J., Peletier M.A., Scardia L.: Asymptotic behaviour of a pile-up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)
MathSciNet
MATH
Google Scholar
Hmidi T., Mateu J., Verdera J.: On rotating doubly connected vortices. J. Differ. Equ. 258, 1395–1429 (2015)
ADS
MathSciNet
MATH
Google Scholar
Holm D.D., Putkaradze V.: Formation of clumps and patches in self-aggregation of finite-size particles. Phys. D 220, 183–196 (2006)
MathSciNet
MATH
Google Scholar
Kirchhoff G.: Vorlesungen über mathematische Physik. Teubner, Leipzig (1874)
MATH
Google Scholar
Kolokolnikov, T., Sun, H., Uminsky, D., Bertozzi, A.L.: Stability of ring patterns arising from two-dimensional particle interactions. Phys. Rev. E 84, 015203, 4pp (2011)
Kuijlaars A.B.J., Dragnev P.D.: Equilibrium problems associated with fast decreasing polynomials. Proc. Am. Math. Soc. 127, 1065–1074 (1999)
MathSciNet
MATH
Google Scholar
Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)
Mitchell, T.B., Rossi, L.F.: The evolution of Kirchhoff elliptic vortices. Phys. Fluids 20, 054103, 12pp (2008)
ADS
MATH
Google Scholar
Mogilner A., Edelstein-Keshet L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)
MathSciNet
MATH
Google Scholar
Mora M.G., Peletier M., Scardia L.: Convergence of interaction-driven evolutions of dislocations with Wasserstein dissipation and slip-plane confinement. SIAM J. Math. Anal. 49, 4149–4205 (2017)
MathSciNet
MATH
Google Scholar
Mora M.G., Rondi L., Scardia L.: The equilibrium measure for a nonlocal dislocation energy. Commun. Pure Appl. Math. 72, 136–158 (2019)
MathSciNet
MATH
Google Scholar
Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Comunm. Partial Differ. Equ. 26, 101–174 (2001)
MathSciNet
MATH
Google Scholar
Saff E.B., Totik V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)
MATH
Google Scholar
Serfaty S., Vázquez J.L.: A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49, 1091–1120 (2014)
MathSciNet
MATH
Google Scholar
Simione R., Slepčev D., Topaloglu I.: Existence of ground states of nonlocal-interaction energies. J. Stat. Phys. 159, 972–986 (2015)
ADS
MathSciNet
MATH
Google Scholar
Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
MATH
Google Scholar
Topaz C.M., Bertozzi A.L., Lewis M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)
MathSciNet
MATH
Google Scholar
Toscani G.: One-dimensional kinetic models of granular flows. M2AN Math. Model. Numer. Anal. 34, 1277–1291 (2000)
MathSciNet
MATH
Google Scholar
Villani C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)
MATH
Google Scholar