Skip to main content
Log in

Stationary Phase Methods and the Splitting of Separatrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using stationary phase methods, we provide an explicit formula for the Melnikov function of the one and a half degrees of freedom system given by a Hamiltonian system subject to a rapidly oscillating perturbation. Remarkably, the Melnikov function turns out to be computable using very little information on the separatrix and in the case of non-analytic systems. This is related to a priori stable systems coupled with low regularity perturbations. A natural physical application is to perturbations controlled by wave-type equations, so in particular we also illustrate this result with the motion of charged particles in a rapidly oscillating electromagnetic field. Quasi-periodic perturbations are discussed too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldomá I., Fontich E., Guardia M., Seara T.M.: Exponentially small splitting of separatrices beyond Melnikov analysis: rigorous results. J. Differ. Equ. 253, 3304–3439 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Belitskii, G., Tkachenko, V.: One-dimensional functional equations, Birkhäuser, Basel (2003)

  3. Burns K., Weiss H.: A geometric criterion for positive topological entropy. Commun. Math. Phys. 172, 95–118 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chierchia L., Gallavotti G.: Drift and diffusion in phase space. Ann. Inst. H. Poincaré 60, 1–144 (1994)

    MathSciNet  MATH  Google Scholar 

  5. De Lellis C., Székelyhidi L.: High dimensionality and h-principle in PDE. Bull. Am. Math. Soc. 54, 247–282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delshams A., Gelfreich V., Jorba A., Seara T.M.: Exponentially small splitting of separatrices under fast quasiperiodic forcing. Commun. Math. Phys. 189, 35–71 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Delshams A., Gonchenko M., Gutiérrez P.: Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio. Regul. Chaotic Dyn. 19, 663–680 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Delshams A., Gonchenko M., Gutiérrez P.: Exponentially small splitting of separatrices and transversality associated to whiskered tori with quadratic frequency ratio. SIAM J. Appl. Dyn. Syst. 15, 981–1024 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delshams A., Seara T.M.: An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Commun. Math. Phys. 150, 433–463 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Eliashberg, Y., Mishachev, N.: Introduction to the h-principle, American Mathematical Society, Providence (2002)

  11. Enciso A., Lucà R., Peralta-Salas D.: Vortex reconnection in the three dimensional Navier–Stokes equations. Adv. Math. 309, 452–486 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Enciso, A., Peralta-Salas, D.: A problem of Ulam about magnetic fields generated by knotted wires. Ergodic Theory Dyn. Syst. (2017). https://doi.org/10.1017/etds.2017.117

  13. Féjoz J., Guardia M., Kaloshin V., Roldán P.: Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem. J. Eur. Math. Soc. 18, 2315–2403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fontich E.: Rapidly forced planar vector fields and splitting of separatrices. J. Differ. Equ. 119, 310–335 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Grafakos, L.: Classical Fourier Analysis, Springer, New York (2014)

  16. Guardia M., Martí n P., Seara T.M.: Oscillatory motions for the restricted planar circular three body problem. Invent. Math. 203, 417–492 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Guardia M., Seara T.M.: Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation. Nonlinearity 25, 1367–1412 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York (1990)

  19. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds, Springer, New York (1977)

  20. Katok A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. IHES 51, 137–173 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lochak P., Marco J.-P., Sauzin D.: On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems. Mem. Am. Math. Soc. 163, 1–145 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Lombardi, E.: Oscillatory Integrals and Phenomena Beyond All Algebraic Orders, Springer, New York (2000)

  23. Nash J.: C 1 isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nazarov F., Sodin M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131, 1337–1357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sauzin D.: Résurgence paramétrique et exponentielle petitesse de l’écart des séparatrices du pendule rapidement forcé. Ann. Ins. Fourier 45, 453–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sauzin D.: A new method for measuring the splitting of invariant manifolds. Ann. Sci. Éc. Norm. Sup. 34, 159–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smale S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stein, E.M.: Harmonic Analysis, Princeton University Press, Princeton (1993)

Download references

Acknowledgments

A.E. and D.P.-S. are respectively supported by the ERCStartingGrants 633152 and 335079. A.L. is supported by the Knut och Alice Wallenbergs stiftelse KAW 2015.0365. This work is supported in part by the ICMAT–Severo Ochoa grant SEV-2015-0554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Enciso.

Additional information

Communicated by C. Liverani

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enciso, A., Luque, A. & Peralta-Salas, D. Stationary Phase Methods and the Splitting of Separatrices. Commun. Math. Phys. 368, 1297–1322 (2019). https://doi.org/10.1007/s00220-019-03364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03364-0

Navigation