Abstract
We study the asymptotics of the natural L2 metric on the Hitchin moduli space with group \({G = \mathrm{SU}(2)}\). Our main result, which addresses a detailed conjectural picture made by Gaiotto et al. (Adv Math 234:239–403, 2013), is that on the regular part of the Hitchin system, this metric is well-approximated by the semiflat metric from Gaiotto et al. (2013). We prove that the asymptotic rate of convergence for gauged tangent vectors to the moduli space has a precise polynomial expansion, and hence that the difference between the two sets of metric coefficients in a certain natural coordinate system also has polynomial decay. New work by Dumas-Neitzke and later Fredrickson shows that the convergence is actually exponential.
This is a preview of subscription content, access via your institution.
References
- Ba
Balduzzi D.: Donagi–Markman cubic for Hitchin systems. Math. Res. Lett. 13(5–6), 923–933 (2006)
- BC
Baues O., Cortés V.: Proper affine hyperspheres which fiber over projective special Kähler manifolds. Asian J. Math. 7(1), 115–132 (2003)
- BNR
Beauville A., Narasimhan M., Ramanan S.: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)
- BL
Birkenhake, C., Lange , H.: Complex abelian varieties. 2nd Edn. In: Grundlehren der Mathematischen Wissenschaften, Col. 302. Springer, Berlin (2004)
- CM
Cortés V, Mohaupt T: Special geometry of Euclidean supersymmetry. III. The local r-map, instantons and black holes. J. High Energy Phys. 7(066), 64 (2009)
- DH
Douady A., Hubbard J.: On the density of Strebel differentials. Invent. Math. 30(2), 175–179 (1975)
- DN
Dumas, D., Neitzke, A.: Asymptotics of Hitchin’s metric on the Hitchin section. Commun. Math. Phys. (2018). https://doiorg.stanford.idm.oclc.org/10.1007/s00220-018-3216-7
- Fr18
Fredrickson, L.: Exponential decay for the asymptotic geometry of the Hitchin metric, preprint (2018). arXiv:1810.01554.
- Fr
Freed D.: Special Kähler manifolds. Commun. Math. Phys. 203(1), 31–52 (1999)
- GMN
Gaiotto D., Moore G., Neitzke A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)
- GS
Guillemin V., Sternberg S.: Symplectic techniques in physics. Cambridge University Press, Cambridge (1990)
- HHP
Hertling C., Hoevenaars L., Posthuma H.: Frobenius manifolds, projective special geometry and Hitchin systems. J. Reine Angew. Math. 649, 117–165 (2010)
- Hi87a
Hitchin N.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc.(3) 55(1), 59–126 (1987)
- Hi87b
Hitchin N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)
- HKLR
Hitchin N., Karlhede A., Lindström U., Roček M.: Hyper-Kähler metrics and supersymmetry. Commun. Math. Phys. 108(4), 535–589 (1987)
- MSWW14
Mazzeo R., Swoboda J., Weiß H., Witt F.: Ends of the moduli space of Higgs bundles. Duke Math. J. 165(12), 2227–2271 (2016)
- MSWW15
Mazzeo, R., Swoboda, J., Weiß, H., Witt, F.: Limiting configurations for solutions of Hitchin’s equation. Semin. Theor. Spectr. Geom. 31, 91–116 (2012–2014)
- Mo
Mochizuki T.: Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces. J. Topol. 9(4), 1021–1073 (2016)
- Ne
Neitzke, A.: Notes on a new construction of hyperkahler metrics. Homological mirror symmetry and tropical geometry, 351–375, Lect. Notes Unione Mat. Ital., Vol. 15. Springer, Cham (2014)
- Ni
Nitsure N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62(2), 275–300 (1991)
Author information
Affiliations
Corresponding author
Additional information
RM supported by NSF Grant DMS-1105050 and DMS-1608223. JS and HW supported by DFG SPP 2026 ‘Geometry at infinity’. The author(s) acknowledge(s) support from U.S. National Science Foundation Grants DMS 1107452, 1107263, 1107367 "RNMS: Geometric Structures and Representation Varieties" (the GEAR Network).
Communicated by N. Nekrasov
Rights and permissions
About this article
Cite this article
Mazzeo, R., Swoboda, J., Weiss, H. et al. Asymptotic Geometry of the Hitchin Metric. Commun. Math. Phys. 367, 151–191 (2019). https://doi.org/10.1007/s00220-019-03358-y
Received:
Accepted:
Published:
Issue Date: