Remarks on the Green–Schwarz Terms of Six-Dimensional Supergravity Theories


We construct the Green–Schwarz terms of six-dimensional supergravity theories on spacetimes with non-trivial topology and gauge bundle. We prove the cancellation of all global gauge and gravitational anomalies for theories with gauge groups given by products of U(n), SU(n) and Sp(n) factors, as well as for E8. For other gauge groups, anomaly cancellation is equivalent to the triviality of a certain 7-dimensional spin topological field theory. We show in the case of a finite Abelian gauge group that there are residual global anomalies imposing constraints on the 6d supergravity. These constraints are compatible with the known F-theory models. Interestingly, our construction requires that the gravitational anomaly coefficient of the 6d supergravity theory is a characteristic element of the lattice of string charges, a fact true in six-dimensional F-theory compactifications but that until now was lacking a low-energy explanation. We also discover a new anomaly coefficient associated with a torsion characteristic class in theories with a disconnected gauge group.

This is a preview of subscription content, log in to check access.


  1. 1

    Taylor, W.: TASI lectures on supergravity and string vacua in various dimensions. arXiv:1104.2051

  2. 2

    Kumar V., Morrison D.R., Taylor W.: Global aspects of the space of 6D N = 1 supergravities. JHEP 11, 118 (2010) arXiv:1008.1062

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Monnier, S., Moore, G.W., Park, D.S.: Quantization of anomaly coefficients in 6D \({\mathcal{N}=(1,0)}\) supergravity. arXiv:1711.04777

  4. 4

    Freed D.S.: Anomalies and invertible field theories. Proc. Symp. Pure Math. 88, 25–46 (2014) arXiv:1404.7224

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Freed D.S., Moore G.W.: Setting the quantum integrand of M-theory. Commun. Math. Phys. 263, 89–132 (2006) arXiv:hep-th/0409135

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Monnier S.: Hamiltonian anomalies from extended field theories. Commun. Math. Phys. 338, 1327–1361 (2015) arXiv:1410.7442

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Witten E.: World sheet corrections via D instantons. JHEP 02, 030 (2000) arXiv:hep-th/9907041

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Dai X.-Z., Freed D.S.: Eta invariants and determinant lines. J. Math. Phys. 35, 5155–5194 (1994) arXiv:hep-th/9405012

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Freed, D.S., Hopkins, M.J.: Reflection positivity and invertible topological phases. arXiv:1604.06527

  10. 10

    Freed D.S., Quinn F.: Chern–Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993) arXiv:hep-th/9111004

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393 (1990)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Jenquin, J.A.: Classical Chern–Simons on manifolds with spin structure. arXiv:math/0504524

  13. 13

    Jenquin, J.A.: Spin Chern-Simons and spin TQFTs. arXiv:math/0605239

  14. 14

    Belov, D., Moore, G.W.: Classification of abelian spin Chern–Simons theories. arXiv:hep-th/0505235

  15. 15

    Monnier, S.: Topological field theories on manifolds with Wu structures. Rev. Math. Phys. 29 (2017). arXiv:1607.01396

    ADS  MathSciNet  Article  Google Scholar 

  16. 16

    Seiberg N., Taylor W.: Charge lattices and consistency of 6D supergravity. JHEP 06, 001 (2011) arXiv:1103.0019

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Henningson M.: Self-dual strings in six dimensions: Anomalies, the ADE-classification, and the world-sheet WZW-model. Commun. Math. Phys. 257, 291–302 (2005) arXiv:hep-th/0405056

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Berman D.S., Harvey J.A.: The self-dual string and anomalies in the M5-brane. JHEP 11, 015 (2004) arXiv:hep-th/0408198

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Kim, H.-C., Kim, S., Park, J.: 6d strings from new chiral gauge \({\mathcal{N}=\left(1,0\right)}\) theories. arXiv:1608.03919

  20. 20

    Shimizu H., Tachikawa Y.: Anomaly of strings of 6d \({ \mathcal{N}=\left(1,0\right) }\) theories. JHEP 11, 165 (2016) arXiv:1608.05894

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Freed, D.S.: Dirac charge quantization and generalized differential cohomology. arXiv:hep-th/0011220

  22. 22

    Freed D.S., Moore G.W., Segal G.: Heisenberg groups and noncommutative fluxes. Ann. Phys. 322, 236–285 (2007) arXiv:hep-th/0605200

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Minasian R., Moore G.W.: K-theory and Ramond–Ramond charge. JHEP 11, 002 (1997) arXiv:hep-th/9710230

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    Witten E.: D-branes and K-theory. JHEP 12, 019 (1998) arXiv:hep-th/9810188

    ADS  Article  Google Scholar 

  25. 25

    Distler, J., Freed, D.S., Moore, G.W.: Orientifold precis. arXiv:0906.0795

  26. 26

    Monnier, S., Moore, G.W.: A brief summary of global anomaly cancellation in six-dimensional supergravity. arXiv:1808.01335

  27. 27

    Avramis, S.D.: Anomaly-free supergravities in six dimensions. arXiv:hep-th/0611133

  28. 28

    Polchinski J.: Monopoles, duality, and string theory. Int. J. Mod. Phys. A 19S1, 145–156 (2004) arXiv:hep-th/0304042

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Banks T., Seiberg N.: Symmetries and strings in field theory and gravity. Phys. Rev. D 83, 084019 (2011) arXiv:1011.5120

    ADS  Article  Google Scholar 

  30. 30

    Green M.B., Schwarz J.H., West P.C.: Anomaly free chiral theories in six-dimensions. Nucl. Phys. B 254, 327–348 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31

    Sagnotti A.: A note on the Green–Schwarz mechanism in open string theories. Phys. Lett. B 294, 196–203 (1992) arXiv:hep-th/9210127

    ADS  Article  Google Scholar 

  32. 32

    Sadov V.: Generalized Green–Schwarz mechanism in F theory. Phys. Lett. B 388, 45–50 (1996) arXiv:hep-th/9606008

    ADS  MathSciNet  Article  Google Scholar 

  33. 33

    Riccioni F.: All couplings of minimal six-dimensional supergravity. Nucl. Phys. B 605, 245–265 (2001) arXiv:hep-th/0101074

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. 34

    Green M.B., Schwarz J.H.: Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory. Phys. Lett. B 149, 117–122 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35

    Witten E.: Global gravitational anomalies. Commun. Math. Phys. 100, 197–229 (1985)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. 36

    Monnier S.: The global anomalies of (2,0) superconformal field theories in six dimensions. JHEP 09 (2014). arXiv:1406.4540

  37. 37

    Bismut J.-M., Freed D.S.: The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107, 103–163 (1986)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. 38

    Fiorenza, D., Valentino, A.: Boundary conditions for topological quantum field theories, anomalies and projective modular functors. Commun. Math. Phys. 338 (2015). arXiv:1409.5723

    ADS  MathSciNet  Article  Google Scholar 

  39. 39

    Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambr. Philos. Soc. 77, 43–69 (1975)

    MathSciNet  Article  Google Scholar 

  40. 40

    Witten E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997) arXiv:hep-th/9610234

    ADS  MathSciNet  Article  Google Scholar 

  41. 41

    Maldacena J.M., Moore G.W., Seiberg N.: D-brane charges in five-brane backgrounds. JHEP 10, 005 (2001) arXiv:hep-th/0108152

    ADS  MathSciNet  Article  Google Scholar 

  42. 42

    Belov, D., Moore, G.W.: Holographic action for the self-dual field. arXiv:hep-th/0605038

  43. 43

    Monnier S.: The global gravitational anomaly of the self-dual field theory. Commun. Math. Phys. 325, 73–104 (2014) arXiv:1110.4639

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. 44

    Taylor, L.R.: Gauss sums in algebra and topology. Accessed 3 Feb 2019

  45. 45

    Monnier, S.: The anomaly field theories of six-dimensional (2,0) superconformal theories. arXiv:1706.01903

  46. 46

    Bershadsky, M., Vafa, C.: Global anomalies and geometric engineering of critical theories in six-dimensions. arXiv:hep-th/9703167

  47. 47

    Suzuki R., Tachikawa Y.: More anomaly-free models of six-dimensional gauged supergravity. J. Math. Phys. 47, 062302 (2006) arXiv:hep-th/0512019

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. 48

    Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology, vol. 1167 of Lecture Notes in Mathematics, pp. 50–80. Springer Berlin (1985).

    Google Scholar 

  49. 49

    Hopkins M.J., Singer I.M.: Quadratic functions in geometry, topology, and M-theory. J. Diff. Geom. 70, 329 (2005) arXiv:math/0211216

    MathSciNet  Article  Google Scholar 

  50. 50

    Freed, D.S., Moore G.W., Segal G.: The uncertainty of fluxes. Commun.Math.Phys. 271, 247–274 (2007) arXiv:hep-th/0605198

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. 51

    Witten E.: Topological tools in ten-dimensional physics. Int. J. Mod. Phys. A 1, 39 (1986)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. 52

    Witten E.: Duality relations among topological effects in string theory. JHEP 05, 031 (2000) arXiv:hep-th/9912086

    ADS  MathSciNet  Article  Google Scholar 

  53. 53

    Diaconescu, E., Moore, G.W., Freed, D.S.: The M-theory 3-form and E(8) gauge theory. arXiv:hep-th/0312069

  54. 54

    Monnier S.: The global anomaly of the self-dual field in general backgrounds. Ann. Henri Poincaré 17, 1003–1036 (2016) arXiv:1309.6642

    ADS  MathSciNet  Article  Google Scholar 

  55. 55

    Brumfiel G.W., Morgan J.W.: Quadratic functions, the index modulo 8 and a Z/4-Hirzebruch formula. Topology 12, 105–122 (1973)

    MathSciNet  Article  Google Scholar 

  56. 56

    Steenrod N.E.: Products of cocycles and extensions of mappings. Ann. Math. 48, 290–320 (1947)

    MathSciNet  Article  Google Scholar 

  57. 57

    Gilkey, P., Leahy, J., Park, J.: Spectral Geometry, Riemannian Submersions, and the Gromov–Lawson Conjecture. Studies in Advanced Mathematics. Taylor & Francis (1999)

  58. 58

    Taylor W., Turner A.P.: An infinite swampland of U(1) charge spectra in 6d supergravity theories. JHEP 06, 010 (2018) arXiv:1803.04447

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. 59

    Stong R.: Notes on Cobordism Theory. Princeton University Press, Princeton (1968)

    Google Scholar 

  60. 60

    Witten, E.: Anomalies revisited, talk at strings (2015). Accessed 3 Feb 2019

  61. 61

    Yuan, Q.: Answer to “Spin manifold and the second Stiefel–Whitney class” (2014). Accessed 3 Feb 2019

  62. 62

    Freed, D.S.: Classical Chern–Simons theory, Part 2. Houston J. Math. 28, 293–310 (2005)

  63. 63

    Freed, D.S.: Pions and generalized cohomology. arXiv:hep-th/0607134

  64. 64

    García-Etxebarria, I., Montero, M.: Dai–Freed anomalies in particle physics. arXiv:1808.00009

  65. 65

    Zhubr, A.V.: Spin bordism of oriented manifolds and the hauptvermuting for 6-manifolds. In: Turaev, V., Vershik, A., Rokhlin, V. (eds.) Topology, Ergodic Theory, Real Algebraic Geometry. Rokhlin’s memorial, pp. 263–286. American Mathematical Society (2001)

  66. 66

    Brown E.: The cohomology of BSO n and BO n with integer coefficients. Proc. Am. Math. Soc. 85, 283–288 (1982)

    Google Scholar 

  67. 67

    Mimura, M., Toda, H.: Topology of Lie Groups I & II, vol. 91 of Translations of Mathematical Monographs. American Mathematical Society (1991)

  68. 68

    Breen L., Mikhailov R., Touzé A.: Derived functors of the divided power functors. Geom. Topol. 20, 257–352 (2016)

    MathSciNet  Article  Google Scholar 

  69. 69

    Smirnov V.A.: Secondary Steenrod operations in cohomology of infinite-dimensional projective spaces. Math. Notes 79, 440–445 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  70. 70

    Kapustin A., Thorngren R., Turzillo A., Wang Z.: Fermionic symmetry protected topological phases and cobordisms. JHEP 12, 052 (2015) arXiv:1406.7329

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references


We would like to thank Daniel Park for discussions that led to this project.We also thank Dan Freed,Mike Hopkins, Graeme Segal,Wati Taylor, Andrew Turner, Nathan Seiberg and Edward Witten for useful discussions. G.M. is supported by the DOE under grant DOE-SC0010008 to Rutgers University. S.M. is supported in part by the grant MODFLAT of the European Research Council, SNSF grants No. 152812, 165666, and by NCCR SwissMAP, funded by the Swiss National Science Foundation.

Author information



Corresponding author

Correspondence to Samuel Monnier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by N. Nekrasov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monnier, S., Moore, G.W. Remarks on the Green–Schwarz Terms of Six-Dimensional Supergravity Theories. Commun. Math. Phys. 372, 963–1025 (2019).

Download citation