Ising Model: Local Spin Correlations and Conformal Invariance


We study the 2-dimensional Ising model at critical temperature on a simply connected subset \({\Omega_{\delta}}\) of the square grid \({\delta\mathbb{Z}^{2}}\). The scaling limit of the critical Ising model is conjectured to be described by Conformal Field Theory; in particular, there is expected to be a precise correspondence between local lattice fields of the Ising model and the local fields of Conformal Field Theory. Towards the proof of this correspondence, we analyze arbitrary spin pattern probabilities (probabilities of finite spin configurations occurring at the origin), explicitly obtain their infinite-volume limits, and prove their conformal covariance at the first (non-trivial) order. We formulate these probabilities in terms of discrete fermionic observables, enabling the study of their scaling limits. This generalizes results of Hongler (Conformal invariance of Ising model correlations. Ph.D. thesis, [Hon10]), Hongler and Smirnov (Acta Math 211(2):191–225, [HoSm13]), Chelkak, Hongler, and Izyurov (Ann. Math. 181(3), 1087–1138, [CHI15]) to one-point functions of any local spin correlations. We introduce a collection of tools which allow one to exactly and explicitly translate any spin pattern probability (and hence any lattice local field correlation) in terms of discrete complex analysis quantities. The proof requires working with multipoint lattice spinors with monodromy (including construction of explicit formulae in the full plane), and refined analysis near their source points to prove convergence to the appropriate continuous conformally covariant functions.

Change history

  • 18 March 2019

    The article Ising Model: Local Spin Correlations and Conformal Invariance, written by Reza Gheissari, Clément Hongler, S. C. Park, was originally published electronically on the publisher’s Internet portal (currently SpringerLink) on 14 February 2019 without open access.


  1. Bax89

    Baxter, R. Exactly Solved Models in Statistical Mechanics Harcourt Brace Jovanovich Publishers, Academic Press Inc. London 1989

  2. BPZ84

    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in twodimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

  3. Bo07

    Boutillier C.: Pattern densities in non-frozen dimer models. Commun. Math. Phys. 271(1), 55–91 (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. BeHo16

    Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE(3) (to appear in Ann. Probab.) (2016)

  5. BeHo18

    Benoist, S., Hongler, C.: in preparation

  6. BoDT09

    Boutillier C., de Tilière B.: The critical Z-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301(2), 473–516 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. BoDT08

    Boutillier C., de Tilière B.: The critical Z-invariant Ising model via dimers: the periodic case. Prob. Theory Relat. Fields 147(3), 379–413 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  8. BuGu93

    Burkhardt T., Guim I.: Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordered boundary fields. Phys. Rev. B (1) 47, 14306–14311 (1993)

    ADS  Article  Google Scholar 

  9. Car84

    Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)

    ADS  Article  Google Scholar 

  10. CDHKS14

    Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising Interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352(2), 157–161 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  11. CCK17

    Chelkak, D., Cimasoni, D., Kassel, A.: Revisiting the combinatorics of the 2D Ising model. Annales de l’Institut Henri Poincaré (D) 4(3), 309–385 (2017)

  12. CGS17

    Chelkak, D., Glazman, A., Smirnov, S.: Discrete stress-energy tensor in the loop O(n) model (2017). arXiv:1604.06339

  13. ChHo18

    Chelkak, D., Hongler, C.: in preparation

  14. CHI15

    Chelkak D., Hongler C., Izyurov K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181(3), 1087–1138 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  15. ChIz13

    Chelkak D., Izyurov K.: Holomorphic spinor observables in the critical Ising model. Commun. Math. Phys. 322(2), 302–303 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. ChSm11

    Chelkak D., Smirnov S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228, 1590–1630 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  17. ChSm12

    Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. CFL28

    Courant R., Friedrichs K., Lewy, H.: Uber die partiellen Differenzengleichungen der mathematischen. Phys. Math. Ann. 100, 32–74 (1928)

  19. DMS97

    Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory, Graduate Texts in Contemporary Physics. Springer, New York (1997)

  20. DHN11

    Duminil-Copin H., Hongler C., Nolin P.: Connection probabilities and RSW-type bounds for the FK Ising model. Commun. Pure Appl. Math. 64(9), 1165–1198 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  21. Dub15

    Dubédat J.: Dimers and families of Cauchy–Riemann operators I. J. Am. Math. Soc. 28, 1063–1167 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  22. Gri06

    Grimmett, G.: The Random-Cluster Model. Volume 333 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2006)

  23. Hon10

    Hongler, C.: Conformal Invariance of Ising model Correlations. Ph.D. thesis (2010)

  24. HoKy10

    Hongler, C., Kytölä, K.: Ising Interfaces and Free Boundary Conditions. J. Am. Math. Soc. 26(4), 1107–1189 (2013).

  25. HKV17

    Hongler, C., Kytölä, K., Viklund, F.: Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure, arXiv:1307.4104 (2017)

  26. HoSm13

    Hongler C., Smirnov S.: The energy density in the critical planar Ising model. Acta Math. 211(2), 191–225 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  27. Isi25

    Ising E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    ADS  Article  Google Scholar 

  28. KaCe71

    Kadanoff L., Ceva H.: Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B (3) 3, 3918–3939 (1971)

    ADS  MathSciNet  Article  Google Scholar 

  29. Kau49

    Kaufman B.: Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev., II. Ser. 76, 1232–1243 (1949)

    ADS  MATH  Google Scholar 

  30. KaOn49

    Kaufman B., Onsager L.: Crystal statistics. III. Short-range order in a binary Ising lattice. Phys. Rev. II. Ser. 76, 1244–1252 (1949)

    ADS  MATH  Google Scholar 

  31. KaOn50

    Kaufman, B., Onsager, L.: Crystal statistics. IV. Long-range order in a binary crystal. Unpublished typescript (1950)

  32. Ken00

    Kenyon R.: Conformal invariance of domino tiling. Ann. Probab. 28, 759–795 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  33. Kes87

    Kesten H.: Hitting probabilities of random walks on \({\mathbb{Z}^{d}}\). Stoch. Processes Appl. 25, 165–184 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. KrWa41

    Kramers H.A., Wannnier G.H.: Statistics of the two-dimensional ferromagnet. I.. Phys. Rev. (2) 60, 252–262 (1941)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. LaLi04

    Lawler G.F., Limic V.: The Beurling estimate for a class of random walks. Electron. J. Probab. 9, 846–861 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  36. Lel55

    Lelong-Ferrand, J.: Représentation conforme et transformations à intègrale de Dirichlet bornée. Gauthier-Villars, Paris (1955)

  37. Len20

    Lenz W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Z. 21, 613–615 (1920)

    Google Scholar 

  38. LuSl12

    Lubetzky E., Sly A.: Critical Ising on the square lattice mixes in polynomial time. Commun. Math. Phys. 313, 815–836 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. Mer01

    Mercat C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218, 177–216 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. McWu73

    McCoy B.M., Wu T.T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge, MA (1973)

    Google Scholar 

  41. Ons44

    Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2) 65, 117–149 (1944)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. Pal07

    Palmer J.: Planar Ising correlations. Birkhäuser, Basel (2007)

    Google Scholar 

  43. SMJ77

    Sato, M., Miwa, T., Jimbo, M.: Studies on holonomic quantum fields, I-IV. Proc. Jpn Acad. Ser. A Math. Sci. 53(1), 6–10; 53(1), 147–152; 53(1), 153–158; 53(1), 183–185 (1977)

  44. Smi06

    Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Sanz-Solé, M. et al.(ed.) Proceedings of the International congress of Mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Volume II: Invited lectures, pp. 1421–1451. Zürich: European Mathematical Society (EMS) (2006)

  45. Smi10

    Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435–1467 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Yan52

    Yang C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. (2) 85, 808–816 (1952)

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references


Firstly, the authors thank the anonymous referees for their many helpful suggestions and comments. This research was initiated during the Research Experience for Undergraduates program at Mathematics Department of Columbia University, funded by the NSF under grant DMS-0739392. We would like to thank the T.A., Krzysztof Putyra, for his help during this program and the program coordinator Robert Lipshitz, as well as all the participants, in particular Adrien Brochard and Woo Chang Chung. R.G. would like to thank Chuck Newman and Eyal Lubetzky for interesting discussions. C.H. would like to thank Dmitry Chelkak and Stanislav Smirnov, for sharing many ideas and insights about the Ising model and conformal invariance; Itai Benjamini and Curtis McMullen for asking questions that suggested we look at this problem; Stéphane Benoist, John Cardy, Julien Dubédat, Hugo Duminil-Copin, Konstantin Izyurov, Kalle Kytölä and Wendelin Werner for interesting discussions, the NSF under grant DMS-1106588, the ERC under grant SG CONSTAMIS, the NCCR Swissmap, the Blavatnik family foundation, the Latsis family foundation, and the Minerva Foundation for financial support. S.P. would like to thank C.M. Munteanu for interesting discussions.

Author information



Corresponding author

Correspondence to Reza Gheissari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to a retrospective Open Access order.

Communicated by H. Duminil-Copin

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gheissari, R., Hongler, C. & Park, S.C. Ising Model: Local Spin Correlations and Conformal Invariance. Commun. Math. Phys. 367, 771–833 (2019).

Download citation