Abstract
We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for \({\mathcal{E}_n}\)-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.
Similar content being viewed by others
References
Ahearn S., Kuhn N.: Product and other fine structure in polynomial resolutions of mapping spaces. Algebr. Geom. Topol. 2, 591–647 (2002)
Ayala D., Francis J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)
Ayala, D., Francis, J.: Zero-pointed manifolds. Preprint. arXiv:1409.2857
Ayala, D., Francis, J., Rozenblyum, N.: A stratified homotopy hypothesis. J. Eur. Math. Soc. arXiv:1502.01713
Ayala D., Francis J., Tanaka H.L.: Local structures on stratified spaces. Adv. Math. 307, 903–1028 (2017)
Ayala D., Francis J., Tanaka H.L.: Factorization homology of stratified spaces. Selecta Math. (N.S.) 23(1), 293–362 (2017)
Baez J., Dolan J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995)
Beilinson A., Drinfeld V.: Chiral algebras. American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI (2004)
Ben-Zvi D., Francis J., Nadler D.: Integral transforms and Drinfeld centers in derived algebraic geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)
Boardman, J.M., Vogt, R.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer, Berlin (1973)
Bödigheimer, C.-F.: Stable splittings of mapping spaces. Algebraic topology (Seattle, Wash., 1985), 174–187, Lecture Notes in Math., 1286, Springer, Berlin (1987)
Burghelea, D., Vigu-Poirrier, M.: Cyclic homology of commutative algebras. I. Algebraic topology rational homotopy (Louvain-la-Neuve, 1986), 5172, Lecture Notes in Math., 1318, Springer, Berlin, (1988)
Campbell, J.: Derived Koszul duality and topological Hochschild homology. Preprint. arXiv:1401.5147
Costello K.: Renormalization and effective field theory. Mathematical Surveys and Monographs, 170. American Mathematical Society, Providence, RI (2011)
Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. Preprint http://www.math.northwestern.edu/~costello/renormalization
Feigin, B., Tsygan, B.: Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen. 19(2), 5262, 96 (1985)
Feigin, B., Tsygan, B.: Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras. K-theory, arithmetic and geometry (Moscow, 1984–1986), 210–239, Lecture Notes in Math., 1289, Springer, Berlin (1987)
Francis, J.: Derived algebraic geometry over \({\mathcal{E}_n}\)-rings. Thesis (PhD)—Massachusetts Institute of Technology (2008)
Francis J.: The tangent complex and Hochschild cohomology of \({\mathcal{E}_n}\)-rings. Compos. Math. 149(3), 430–480 (2013)
Francis J., Gaitsgory D.: Chiral Koszul duality. Selecta Math. (N.S.) 18(1), 27–87 (2012)
Frölicher A., Nijenhuis A.: A theorem on stability of complex structures. Proc. Nat. Acad. Sci. U.S.A. 43, 239–241 (1957)
Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. of Math. (2) 139(1), 183–225 (1994)
Gaitsgory, D, Lurie, J: Weil’s Conjecture for Function Fields. Preprint http://www.math.harvard.edu/~lurie/
Gerstenhaber M.: On the deformation of rings and algebras. Ann. of Math. (2) 79, 59–103 (1964)
Gerstenhaber M., Schack S: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48(3), 229–247 (1987)
Getzler E.: Lie theory for nilpotent L\({_\infty}\)-algebras. Ann. of Math. (2) 170, 271–301 (2009)
Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. Geometry, topology, & physics, 167–201, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA (1995)
Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)
Goldman W., Millson J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. No. 67, 43–96 (1988)
Goldman W., Millson J.: The homotopy invariance of the Kuranishi space. Illinois J. Math. 34(2), 337–367 (1990)
Goodwillie T.: Calculus. III. Taylor series. Geom. Topol. 7, 645–711 (2003)
Hinich, V: Descent of Deligne groupoids. Int. Math. Res. Notices (5):223–239 (1997)
Hinich V.: Formal stacks as dg-coalgebras. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)
Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. I.. Algebra Colloq 4(2), 213–240 (1997)
Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. II. Algebra Colloq. 4(3), 291–316 (1997)
Joyal André: Quasi-categories and Kan complexes. Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175(1–3), 207–222 (2002)
Kallel S.: Spaces of particles on manifolds and generalized Poincaré dualities. Q. J. Math. 52(1), 45–70 (2001)
Knudsen, B.: Higher enveloping algebras. Preprint (2017)
Kodaira K., Spencer D.: On deformations of complex analytic structures. I, II. Ann. of Math. (2) 67, 328–466 (1958)
Kuhn, N.: Goodwillie towers and chromatic homotopy: an overview. In: Proceedings of the Nishida Fest (Kinosaki 2003), 245–279, Geom. Topol. Monogr., 10, Geom. Topol. Publ., Coventry (2007)
Kuhn N.: Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces. Adv. Math. 201(2), 318–378 (2006)
Kuranishi M.: On the locally complete families of complex analytic structures. Ann. of Math. (2) 75, 536–577 (1962)
Loday J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)
Lurie, J.: Higher topos theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ (2009)
Lurie, J.: Higher algebra. Preprint dated September 14 (2014). http://www.math.harvard.edu/~lurie/
Lurie, J.: On the classification of topological field theories. Current developments in mathematics, 2008, 129–280. Int. Press, Somerville, MA, (2009)
Lurie, J.: Derived algebraic geometry X: Formal moduli problems. Preprint http://www.math.harvard.edu/~lurie/
Matsuoka, T.: Descent and the Koszul duality for locally constant factorisation algebras. Thesis (Ph.D.)—Northwestern University. (2014)
May, J.P.: The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol. 271, pp. viii+175. Springer, Berlin (1972).
Milnor J., Moore J.: On the structure of Hopf algebras. Ann. of Math. (2) 81, 211–264 (1965)
McDuff D.: Configuration spaces of positive and negative particles.. Topology 14, 91–107 (1975)
Moore, J: Differential Homological Algebra. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 335–339. Gauthier-Villars, Paris (1971)
Nijenhuis A., Richardson R.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72, 1–29 (1966)
Priddy S.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)
Quillen D.: Rational homotopy theory. Ann. of Math. (2) 90, 205–295 (1969)
Salvatore, P.: Configuration spaces with summable labels. Cohomological Methods in Homotopy Theory (Bellaterra, 1998), 375–395, Progr. Math., 196, Birkhäuser, Basel (2001)
Schlessinger M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)
Schlessinger M., Stasheff J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38(2-3), 313–322 (1985)
Segal G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)
Segal G.: The topology of spaces of rational functions. Acta. Math. 143, 39–72 (1979)
Segal, G.: The definition of conformal field theory. Topology, Geometry and Quantum Field Theory, 421–577, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge (2004)
Segal G.: Locality of holomorphic bundles, and locality in quantum field theory. The many facets of geometry, 164–176. Oxford Univ. Press, Oxford (2010)
Sinha D.: Koszul duality in algebraic topology. J. Homotopy Relat. Struct. 8(1), 1–12 (2013)
Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)
Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902) (2008)
Weiss M.: Embeddings from the point of view of immersion theory. I. Geom. Topol. 3, 67–101 (1999)
Acknowledgments
Our collaboration began at a workshop in Glanon in 2011. We are grateful to people of Glanon for their warm hospitality in hosting this annual workshop, and to Grégory Ginot for inviting us to participate in it. We have learned an enormous amount from Jacob Lurie; we use, in particular, his opuses [Lu1] and [Lu2] throughout. We thank Greg Arone for several very helpful conversations on Goodwillie calculus. JF thanks Kevin Costello for offering many insights in many conversations over the years. We thank the referees for their informed and detailed readings, which have significantly improved this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
DA was partially supported by ERC adv. Grant No. 228082, and by the National Science Foundation under Awards 0902639 and 1507704. JF was supported by the National Science Foundation under Awards 1207758 and 1508040.
Rights and permissions
About this article
Cite this article
Ayala, D., Francis, J. Poincaré/Koszul Duality. Commun. Math. Phys. 365, 847–933 (2019). https://doi.org/10.1007/s00220-019-03311-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-019-03311-z