Skip to main content
Log in

Poincaré/Koszul Duality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for \({\mathcal{E}_n}\)-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahearn S., Kuhn N.: Product and other fine structure in polynomial resolutions of mapping spaces. Algebr. Geom. Topol. 2, 591–647 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayala D., Francis J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayala, D., Francis, J.: Zero-pointed manifolds. Preprint. arXiv:1409.2857

  4. Ayala, D., Francis, J., Rozenblyum, N.: A stratified homotopy hypothesis. J. Eur. Math. Soc. arXiv:1502.01713

  5. Ayala D., Francis J., Tanaka H.L.: Local structures on stratified spaces. Adv. Math. 307, 903–1028 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayala D., Francis J., Tanaka H.L.: Factorization homology of stratified spaces. Selecta Math. (N.S.) 23(1), 293–362 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baez J., Dolan J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Beilinson A., Drinfeld V.: Chiral algebras. American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI (2004)

    MATH  Google Scholar 

  9. Ben-Zvi D., Francis J., Nadler D.: Integral transforms and Drinfeld centers in derived algebraic geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boardman, J.M., Vogt, R.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer, Berlin (1973)

  11. Bödigheimer, C.-F.: Stable splittings of mapping spaces. Algebraic topology (Seattle, Wash., 1985), 174–187, Lecture Notes in Math., 1286, Springer, Berlin (1987)

  12. Burghelea, D., Vigu-Poirrier, M.: Cyclic homology of commutative algebras. I. Algebraic topology rational homotopy (Louvain-la-Neuve, 1986), 5172, Lecture Notes in Math., 1318, Springer, Berlin, (1988)

  13. Campbell, J.: Derived Koszul duality and topological Hochschild homology. Preprint. arXiv:1401.5147

  14. Costello K.: Renormalization and effective field theory. Mathematical Surveys and Monographs, 170. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  15. Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. Preprint http://www.math.northwestern.edu/~costello/renormalization

  16. Feigin, B., Tsygan, B.: Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen. 19(2), 5262, 96 (1985)

  17. Feigin, B., Tsygan, B.: Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras. K-theory, arithmetic and geometry (Moscow, 1984–1986), 210–239, Lecture Notes in Math., 1289, Springer, Berlin (1987)

  18. Francis, J.: Derived algebraic geometry over \({\mathcal{E}_n}\)-rings. Thesis (PhD)—Massachusetts Institute of Technology (2008)

  19. Francis J.: The tangent complex and Hochschild cohomology of \({\mathcal{E}_n}\)-rings. Compos. Math. 149(3), 430–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Francis J., Gaitsgory D.: Chiral Koszul duality. Selecta Math. (N.S.) 18(1), 27–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frölicher A., Nijenhuis A.: A theorem on stability of complex structures. Proc. Nat. Acad. Sci. U.S.A. 43, 239–241 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. of Math. (2) 139(1), 183–225 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gaitsgory, D, Lurie, J: Weil’s Conjecture for Function Fields. Preprint http://www.math.harvard.edu/~lurie/

  24. Gerstenhaber M.: On the deformation of rings and algebras. Ann. of Math. (2) 79, 59–103 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gerstenhaber M., Schack S: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48(3), 229–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Getzler E.: Lie theory for nilpotent L\({_\infty}\)-algebras. Ann. of Math. (2) 170, 271–301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. Geometry, topology, & physics, 167–201, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA (1995)

  28. Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goldman W., Millson J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. No. 67, 43–96 (1988)

    Article  MATH  Google Scholar 

  30. Goldman W., Millson J.: The homotopy invariance of the Kuranishi space. Illinois J. Math. 34(2), 337–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goodwillie T.: Calculus. III. Taylor series. Geom. Topol. 7, 645–711 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hinich, V: Descent of Deligne groupoids. Int. Math. Res. Notices (5):223–239 (1997)

  33. Hinich V.: Formal stacks as dg-coalgebras. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. I.. Algebra Colloq 4(2), 213–240 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. II. Algebra Colloq. 4(3), 291–316 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Joyal André: Quasi-categories and Kan complexes. Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175(1–3), 207–222 (2002)

    Article  MathSciNet  Google Scholar 

  37. Kallel S.: Spaces of particles on manifolds and generalized Poincaré dualities. Q. J. Math. 52(1), 45–70 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knudsen, B.: Higher enveloping algebras. Preprint (2017)

  39. Kodaira K., Spencer D.: On deformations of complex analytic structures. I, II. Ann. of Math. (2) 67, 328–466 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuhn, N.: Goodwillie towers and chromatic homotopy: an overview. In: Proceedings of the Nishida Fest (Kinosaki 2003), 245–279, Geom. Topol. Monogr., 10, Geom. Topol. Publ., Coventry (2007)

  41. Kuhn N.: Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces. Adv. Math. 201(2), 318–378 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kuranishi M.: On the locally complete families of complex analytic structures. Ann. of Math. (2) 75, 536–577 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  43. Loday J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Lurie, J.: Higher topos theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ (2009)

  45. Lurie, J.: Higher algebra. Preprint dated September 14 (2014). http://www.math.harvard.edu/~lurie/

  46. Lurie, J.: On the classification of topological field theories. Current developments in mathematics, 2008, 129–280. Int. Press, Somerville, MA, (2009)

  47. Lurie, J.: Derived algebraic geometry X: Formal moduli problems. Preprint http://www.math.harvard.edu/~lurie/

  48. Matsuoka, T.: Descent and the Koszul duality for locally constant factorisation algebras. Thesis (Ph.D.)—Northwestern University. (2014)

  49. May, J.P.: The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol. 271, pp. viii+175. Springer, Berlin (1972).

  50. Milnor J., Moore J.: On the structure of Hopf algebras. Ann. of Math. (2) 81, 211–264 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  51. McDuff D.: Configuration spaces of positive and negative particles.. Topology 14, 91–107 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Moore, J: Differential Homological Algebra. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 335–339. Gauthier-Villars, Paris (1971)

  53. Nijenhuis A., Richardson R.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72, 1–29 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  54. Priddy S.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  55. Quillen D.: Rational homotopy theory. Ann. of Math. (2) 90, 205–295 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  56. Salvatore, P.: Configuration spaces with summable labels. Cohomological Methods in Homotopy Theory (Bellaterra, 1998), 375–395, Progr. Math., 196, Birkhäuser, Basel (2001)

  57. Schlessinger M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  58. Schlessinger M., Stasheff J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38(2-3), 313–322 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  59. Segal G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Segal G.: The topology of spaces of rational functions. Acta. Math. 143, 39–72 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  61. Segal, G.: The definition of conformal field theory. Topology, Geometry and Quantum Field Theory, 421–577, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge (2004)

  62. Segal G.: Locality of holomorphic bundles, and locality in quantum field theory. The many facets of geometry, 164–176. Oxford Univ. Press, Oxford (2010)

    Google Scholar 

  63. Sinha D.: Koszul duality in algebraic topology. J. Homotopy Relat. Struct. 8(1), 1–12 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  65. Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902) (2008)

  66. Weiss M.: Embeddings from the point of view of immersion theory. I. Geom. Topol. 3, 67–101 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Our collaboration began at a workshop in Glanon in 2011. We are grateful to people of Glanon for their warm hospitality in hosting this annual workshop, and to Grégory Ginot for inviting us to participate in it. We have learned an enormous amount from Jacob Lurie; we use, in particular, his opuses [Lu1] and [Lu2] throughout. We thank Greg Arone for several very helpful conversations on Goodwillie calculus. JF thanks Kevin Costello for offering many insights in many conversations over the years. We thank the referees for their informed and detailed readings, which have significantly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Francis.

Additional information

Communicated by Y. Kawahigashi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

DA was partially supported by ERC adv. Grant No. 228082, and by the National Science Foundation under Awards 0902639 and 1507704. JF was supported by the National Science Foundation under Awards 1207758 and 1508040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, D., Francis, J. Poincaré/Koszul Duality. Commun. Math. Phys. 365, 847–933 (2019). https://doi.org/10.1007/s00220-019-03311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03311-z

Navigation