Communications in Mathematical Physics

, Volume 367, Issue 2, pp 629–663 | Cite as

On Nelson-Type Hamiltonians and Abstract Boundary Conditions

  • Jonas LampartEmail author
  • Julian Schmidt


We construct Hamiltonians for systems of nonrelativistic particles linearly coupled to massive scalar bosons using abstract boundary conditions. The construction yields an explicit characterisation of the domain of self-adjointness in terms of boundary conditions that relate sectors with different numbers of bosons. We treat both models in which the Hamiltonian may be defined as a form perturbation of the free operator, such as Fröhlich’s polaron, and renormalisable models, such as the massive Nelson model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Stefan Keppeler, Stefan Teufel and Roderich Tumulka for helpful discussions. J.S. was supported by the German Research Foundation (DFG) within the Research Training Group 1838 Spectral Theory and Dynamics of Quantum Systems and thanks the Laboratoire Interdisciplinaire Carnot de Bourgogne for its hospitality during his stay in Dijon.


  1. AF14.
    Ammari Z., Falconi M.: Wigner measures approach to the classical limit of the Nelson model: convergence of dynamics and ground state energy. J. Stat. Phys. 157(2), 330–362 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. AGHKH88.
    Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H.: Solvable Models in Quantum Mechanics. Texts and Monographs in Physics. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  3. BFK+17.
    Behrndt J., Frank R.L., Kühn C., Lotoreichik V., Rohleder J.: Spectral theory for Schrödinger operators with \({\delta}\)-interactions supported on curves in \({\mathbb{R}^3}\). Ann. Henri Poincaré 18(4), 1305–1347 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. BT17.
    Bley G.A., Thomas L.E.: Estimates on functional integrals of quantum mechanics and non-relativistic quantum field theory. Commun. Math. Phys. 350(1), 79–103 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. CDF+15.
    Correggi M., Dell’Antonio G., Finco D., Michelangeli A., Teta A.: A class of Hamiltonians for a three-particle fermionic system at unitarity. Math. Phys. Anal. Geom. 18(1), 32 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. DFT94.
    Dell’Antonio G., Figari R., Teta A.: Hamiltonians for systems of N particles interacting through point interactions. Ann. Inst. H. Poincaré Phys. Théor. 60(3), 253–290 (1994)MathSciNetzbMATHGoogle Scholar
  7. DR04.
    Dimock J., Rajeev S.G.: Multi-particle Schrödinger operators with point interactions in the plane. J. Phys. A Math. Gen. 37(39), 9157 (2004)ADSCrossRefzbMATHGoogle Scholar
  8. GHL14.
    Gubinelli M., Hiroshima F., Lőrinczi J.: Ultraviolet renormalization of the Nelson Hamiltonian through functional integration. J. Funct. Anal. 267(9), 3125–3153 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. GL18.
    Griesemer M., Linden U.: Stability of the two-dimensional Fermi polaron. Lett. Math. Phys. 108(8), 1837–1849 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. GW16.
    Griesemer M., Wünsch A.: Self-adjointness and domain of the Fröhlich Hamiltonian. J. Math. Phys. 57(2), 021902 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. GW18.
    Griesemer M., Wünsch A.: On the domain of the Nelson Hamiltonian. J. Math. Phys. 59(4), 042111 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. KS95.
    Kiselev A., Simon B.: Rank one perturbations with infinitesimal coupling. J. Funct. Anal. 130(2), 345–356 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. KS16.
    Keppeler S., Sieber M.: Particle creation and annihilation at interior boundaries: one-dimensional models. J. Phys. A Math. Gen. 49(12), 125204 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Lam18.
    Lampart, J.: A nonrelativistic quantum field theory with point interactions in three dimensions (2018). arXiv preprint: arXiv:1804.08295
  15. LSTT18.
    Lampart J., Schmidt J., Teufel S., Tumulka R.: Particle creation at a point source by means of interior-boundary conditions. Math. Phys. Anal. Geom. 21(2), 12 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Miy18.
    Miyao, T.: On the semigroup generated by the renormalized Nelson Hamiltonian (2018). arXiv preprint: arXiv:1803.08659
  17. MM17.
    Matte, O., Møller, J.S.: Feynman–Kac formulas for the ultra-violet renormalized Nelson model (2017). arXiv preprint: arXiv:1701.02600
  18. MO17.
    Michelangeli A., Ottolini A.: On point interactions realised as Ter-Martyrosyan–Skornyakov operators. Rep. Math. Phys. 79(2), 215–260 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. MS17.
    Moser T., Seiringer R.: Stability of a fermionic N + 1 particle system with point interactions. Commun. Math. Phys. 356(1), 329–355 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. MS18.
    Moser T., Seiringer R.: Stability of the 2 + 2 fermionic system with point interactions. Math. Phys. Anal. Geom. 21(3), 19 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Nel64.
    Nelson E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5(9), 1190–1197 (1964)ADSMathSciNetCrossRefGoogle Scholar
  22. Pos08.
    Posilicano A.: Self-adjoint extensions of restrictions. Oper. Matrices 2(4), 483–506 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Tho84.
    Thomas L.E.: Multiparticle Schrödinger Hamiltonians with point interactions. Phys. Rev. D 30, 1233–1237 (1984)ADSMathSciNetCrossRefGoogle Scholar
  24. TT15.
    Teufel, S., Tumulka, R.: New type of Hamiltonians without ultraviolet divergence for quantum field theories (2015). arXiv preprint: arXiv:1505.04847
  25. TT16.
    Teufel S., Tumulka R.: Avoiding ultraviolet divergence by means of interior–boundary conditions. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds.) Quantum Mathematical Physics, pp. 293–311. Birkhäuser, Basel (2016)CrossRefGoogle Scholar
  26. Yaf92.
    Yafaev D.R.: On a zero-range interaction of a quantum particle with the vacuum. J. Phys. A Math. Gen. 25(4), 963 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS and ICB (UMR 6303)Université de Bourgogne Franche-ComtéDijon CedexFrance
  2. 2.Fachbereich MathematikEberhard Karls Universität TübingenTübingenGermany

Personalised recommendations