Abstract
We consider the quantum affine vertex algebra \({\mathcal{V}_{c}(\mathfrak{gl}_N)}\) associated with the rational R-matrix, as defined by Etingof and Kazhdan. We introduce certain subalgebras \({\textrm{A}_c (\mathfrak{gl}_N)}\) of the completed double Yangian \({\widetilde{\textrm{DY}}_{c}(\mathfrak{gl}_N)}\) at the level \({c\in\mathbb{C}}\), associated with the reflection equation, and we employ their structure to construct examples of quasi \({\mathcal{V}_{c}(\mathfrak{gl}_N)}\)-modules. Finally, we use the quasi module map, together with the explicit description of the center of \({\mathcal{V}_{c}(\mathfrak{gl}_N)}\), to obtain formulae for families of central elements in the completed algebra \({\widetilde{\textrm{A}}_c (\mathfrak{gl}_N)}\).
This is a preview of subscription content, access via your institution.
References
Cherednik I.V.: Factorizing particles on a half line and root systems. Theor. Math. Phys. 61, 977–983 (1984)
Chervov, A.V., Molev, A.I.: On higher order Sugawara operators. Int. Math. Res. Not. 1612–1635 (2009)
Chervov, A., Talalaev, D.: Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence. arXiv:hep-th/0604128
Etingof P., Kazhdan D.: Quantization of Lie bialgebras V. Sel. Math. (N.S.) 6, 105–130 (2000)
Feigin B., Frenkel E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A 7(Suppl. 1A), 197–215 (1992)
Frappat L., Jing N., Molev A., Ragoucy E.: Higher Sugawara operators for the quantum affine algebras of type A. Commun. Math. Phys. 345, 631–657 (2016)
Frenkel, E.: Langlands Correspondence for Loop Groups, Cambridge Studies in Advanced Mathematics, 103. Cambridge University Press, Cambridge (2007)
Iohara K.: Bosonic representations of Yangian double \({DY_{\hbar}(\mathfrak{g})}\) with \({\mathfrak{g}=\mathfrak{g}\mathfrak{l}_N,\mathfrak{s}\mathfrak{l}_N}\). J. Phys. A 29, 4593–4621 (1996)
Jing N., Kožić S., Molev A., Yang F.: Center of the quantum affine vertex algebra in type A. J. Algebra 496, 138–186 (2018)
Jucys A.: On the Young operators of the symmetric group. Lietuvos Fizikos Rinkinys 6, 163–180 (1966)
Kulish P.P., Sklyanin E.K.: Algebraic structures related to reflection equations. J. Phys. A 25, 5963–5975 (1992)
Kuznetsov V.B., Jørgensen M.F., Christiansen P.L.: New boundary conditions for integrable lattices. J. Phys. A 28, 4639–4654 (1995)
Li H.-S.: Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules. Contemp. Math. 193, 203–236 (1996)
Li H.-S.: Modules-at-infinity for quantum vertex algebras. Commun. Math. Phys. 282, 819–864 (2008)
Li H.-S.: \({\hbar}\)-Adic quantum vertex algebras and their modules. Commun. Math. Phys. 296, 475–523 (2010)
Li H.-S., Tan S., Wang Q.: Twisted modules for quantum vertex algebras. J. Pure Appl. Algebra 214, 201–220 (2010)
Mintchev M., Ragoucy E., Sorba P.: Spontaneous symmetry breaking in the gl(N)−NLS hierarchy on the half line. J. Phys. A 34, 8345–8364 (2001)
Molev, A.: Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI (2007)
Molev A.I., Ragoucy E.: Representations of reflection algebras. Rev. Math. Phys. 14, 317–342 (2002)
Noumi M.: Macdonald’s symmetric polynomials as zonal spherical functions on quantum homogeneous spaces. Adv. Math. 123, 16–77 (1996)
Okounkov A.: Quantum immanants and higher Capelli identities. Transform. Groups 1, 99–126 (1996)
Reshetikhin N.Y., Semenov-Tian-Shansky M.A.: Central extensions of quantum current groups. Lett. Math. Phys. 19, 133–142 (1990)
Sklyanin E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2389 (1988)
Acknowledgments
The author would like to thank Alexander Molev for fruitful discussions. We would also like to thank the anonymous referee for useful comments and suggestions which helped us to improve the manuscript. The research was partially supported by the Australian Research Council and by the Croatian Science Foundation under the Project 2634.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Kawahigashi
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Dedicated to Mirko Primc on the occasion of his 70th birthday
Rights and permissions
About this article
Cite this article
Kožić, S. Quasi Modules for the Quantum Affine Vertex Algebra in Type A. Commun. Math. Phys. 365, 1049–1078 (2019). https://doi.org/10.1007/s00220-019-03291-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-019-03291-0