Communications in Mathematical Physics

, Volume 364, Issue 3, pp 1121–1161 | Cite as

The Competition of Roughness and Curvature in Area-Constrained Polymer Models

  • Riddhipratim Basu
  • Shirshendu GangulyEmail author
  • Alan Hammond


The competition between local Brownian roughness and global parabolic curvature experienced in many random interface models reflects an important aspect of the KPZ universality class. It may be summarized by an exponent triple (1/2, 1/3, 2/3) representing local interface fluctuation, local roughness (or inward deviation), and convex hull facet length. The three effects arise, for example, in droplets in planar Ising models (Alexander in Commun Math Phys 224(3): 733–781, 2001; Hammond in J Stat Phys 142(2):229–276, 2011, Commun Math Phys 310(2):455–509, 2012, Ann Probab 40(3):921–978, 2012). In this article, we offer a new perspective on this phenomenon. We consider the model of directed last passage percolation in the plane, a paradigmatic example in the KPZ universality class, and constrain the maximizing path under the additional requirement of enclosing an atypically large area. The interface suffers a constraint of parabolic curvature, as the Ising droplets do, but now its local interface fluctuation exponent is governed by KPZ relations, and is thus two-thirds rather than one-half. We prove that the facet lengths of the constrained path’s convex hull are governed by an exponent of 3/4, and inward deviation by an exponent of 1/2. That is, the exponent triple is now (2/3, 1/2, 3/4) in place of (1/2, 1/3, 2/3). This phenomenon appears to be shared among various isoperimetrically extremal circuits in local randomness. Indeed, we formulate a conjecture to this effect, concerning such circuits in supercritical percolation, whose Wulff-like first-order behaviour was recently established by Biskup et al. (Comm Pure Appl Math 68:1483–1531, 2015), settling a conjecture of Benjamini.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Marek Biskup, Craig Evans and Ofer Zeitouni for useful discussions, and an anonymous referee for comments on the manuscript. R.B. was partially supported by an AMS-Simons Travel Grant during the completion of this work. S.G.’s research was supported by a Miller Research Fellowship at UC Berkeley. A.H. was supported by NSF Grant DMS-1512908.


  1. 1.
    Aldous D., Diaconis P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Relat. Fields 103, 199–213 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexander K.S.: Cube-root boundary fluctuations for droplets in random cluster models. Commun. Math. Phys. 224(3), 733–781 (2001)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Auffinger, A., Damron, M., Hanson, J.: 50 years of first passage percolation (2015). arXiv:1511.03262
  4. 4.
    Baik J., Deift P., Johansson K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baik J., Rains E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baik, J., Rains, E.M.: Symmetrized random permutations. In: Random Matrix Models and Their Applications, Volume 40 of Mathematical Sciences Research Institute Publications, pp. 1–19 (2001)Google Scholar
  7. 7.
    Basu, R., Hammond, A.: Localization of near geodesics in Brownian last passage percolation. In preparationGoogle Scholar
  8. 8.
    Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the slow bond problem. arXiv:1408.3464
  9. 9.
    Biskup, M., Louidor, O., Procaccia, E.B., Rosenthal, R.: Isoperimetry in two-dimensional percolation. Comm. Pure Appl. Math. 68, 1483–1531 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bollobás B., Brightwell G.: The height of a random partial order: concentration of measure. Ann. Appl. Probab. 2, 1009–1018 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chatterjee S., Dey P.S.: Central limit theorem for first-passage percolation time across thin cylinders. Probab. Theory Relat. Fields 156(3), 613–663 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deuschel J.-D., Zeitouni O.: Limiting curves for iid records. Ann. Probab. 23, 852–878 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Deuschel J.-D., Zeitouni O.: On increasing subsequences of iid samples. Comb. Probab. Comput. 8(03), 247–263 (1999)CrossRefGoogle Scholar
  14. 14.
    Dey, P.S., Peled, R., Joseph, M.: Longest increasing path within the critical strip. arXiv:1808.08407
  15. 15.
    Dobrushin R.L., Koteckỳ R., Shlosman S.: Wulff Construction: A Global Shape from Local Interaction. American Mathematical Society, Providence (1992)CrossRefGoogle Scholar
  16. 16.
    Durrett R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  17. 17.
    Ferrari P.L., Spohn H.: Constrained brownian motion: fluctuations away from circular and parabolic barriers. Ann. Probab. 33, 1302–1325 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gold, J.: Isoperimetry in supercritical bond percolation in dimensions three and higher (2016). arXiv:1602.05598
  19. 19.
    Hammond A.: Phase separation in random cluster models iii: Circuit regularity. J. Stat. Phys. 142(2), 229–276 (2011)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hammond A.: Phase separation in random cluster models i: uniform upper bounds on local deviation. Commun. Math. Phys. 310(2), 455–509 (2012)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hammond A.: Phase separation in random cluster models ii: the droplet at equilibrium, and local deviation lower bounds. Ann. Probab. 40(3), 921–978 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hammond A., Peres Y.: Fluctuation of a planar brownian loop capturing a large area. Trans. Am. Math. Soc. 360(12), 6197–6230 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ioffe D., Schonmann R.H.: Dobrushin–Koteckỳ–Shlosman theorem up to the critical temperature. Commun. Math. Phys. 199(1), 117–167 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Johansson K.: Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Relat. Fields 116(4), 445–456 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kardar M., Parisi G., Zhang Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    Logan B.F., Shepp L.A.: A variational problem for random young tableaux. Adv. Math. 26, 206–222 (1977)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Löwe M., Merkl F.: Moderate deviations for longest increasing subsequences: the upper tail. Commun. Pure Appl. Math. 54, 1488–1519 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Löwe M., Merkl F., Rolles S.: Moderate deviations for longest increasing subsequences: the lower tail. J. Theor. Probab. 15(4), 1031–1047 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Seppäläinen T.: Large deviations for increasing sequences on the plane. Probab. Theory Relat. Fields 112(2), 221–244 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Vershik, A.M., Kerov, S.V.: Asymptotics of the plancherel measure of the symmetric group and the limiting form of young tables. Soviet Math. Dokl. 18:527–531 (1977). Translation of Dokl. Acad. Nauk. SSSR 233:1024–1027 (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Riddhipratim Basu
    • 1
  • Shirshendu Ganguly
    • 2
    Email author
  • Alan Hammond
    • 3
  1. 1.International Centre for Theoretical Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
  2. 2.Department of StatisticsUC BerkeleyBerkeleyUSA
  3. 3.Departments of Mathematics and StatisticsUC BerkeleyBerkeleyUSA

Personalised recommendations