Skip to main content
Log in

Blow-up Profiles for the Parabolic–Elliptic Keller–Segel System in Dimensions \({n\geq 3}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the blow-up asymptotics of radially decreasing solutions of the parabolic–elliptic Keller–Segel–Patlak system in space dimensions \( {n \geq 3}\). In view of the biological background of this system and of its mass conservation property, blowup is usually interpreted as a phenomenon of concentration or aggregation of the bacterial population. Understanding the asymptotic behavior of solutions at the blowup time is thus meaningful for the interpretation of the model. Under mild assumptions on the initial data, for \({n \geq 3}\), we show that the final profile satisfies \({{C}_{1}|{x}|^{-2}\leq u(x, T ) \leq {C}_{2}|x|^{-2}}\), with convergence in L1 as \({t\rightarrow T}\).This is in sharp contrast with the two-dimensional case, where solutions are known to concentrate to a Dirac mass at the origin (plus an integrable part). We also obtain refined space–time estimates of the form u(x, t) ≤  C(Tt + |x|2)−1 for type I blowup solutions. Previous work had shown that radial, self-similar blowup solutions (which satisfy the above estimates) exist in dimensions \( {n \geq 3}\) and do not exist in dimension 2. Our results thus reveal that the final profile displayed by these special solutions actually corresponds to a much more general phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebernes J., Eberly D. (1988) A description of self-similar blow-up for dimensions \( {n \geq 3}\) Ann. Inst. H. Poincaré Anal. Non Linéaire 5: 1–21

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Biler P. (1995) Existence and nonexistence of solutions for a model of gravitational interaction of particles III. Colloq. Math. 68: 229–239

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler P., Hilhorst D., Nadzieja T. (1994) Existence and nonexistence of solutions for a model of gravitational interaction of particles II. Colloq. Math. 67: 297–308

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanchet A., Dolbeault J., Perthame B. (2006) Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44: 1–33

    MathSciNet  MATH  Google Scholar 

  5. Brenner M.P., Constantin P., Kadanoff L.P., Schenkel A., Venkataramani S.C. (1999) Diffusion, attraction and collapse. Nonlinearity 12: 1071–1098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Budd C., Qi Y.-W. (1989) The existence of bounded solutions of a semilinear elliptic equation. J. Differ. Equ. 82: 207–218

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen Y.-G. (1990) Blow-up solutions of a semilinear parabolic equation with the Neumann and Robin boundary conditions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37: 537–574

    MathSciNet  MATH  Google Scholar 

  8. Cieślak T., Winkler M. (2008) Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21: 1057–1076

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Corrias L., Perthame B., Zaag H. (2004) Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72: 1–29

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman A., McLeod B. (1985) Blow-up of solutions of semilinear heat equations. Indiana Univ. Math. J. 34: 425–447

    Article  MathSciNet  MATH  Google Scholar 

  11. Galaktionov V.A., Kurdyumov S.P., Samarskii A.A. (1984) Asymptotic stability of invariant solutions of nonlinear heat-conduction equation with sources. Differ. Equ. 20: 461–476

    Google Scholar 

  12. Giga Y., Mizoguchi N., Senba T. (2011) Asymptotic behavior of type I blowup solutions to a parabolic–elliptic system of drift-diffusion type. Arch. Ration. Mech. Anal. 201: 549–573

    Article  MathSciNet  MATH  Google Scholar 

  13. Guerra I.A., Peletier M.A. (2004) Self-similar blow-up for a diffusion–– attraction problem. Nonlinearity 17: 2137–2162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Herrero M.A., Medina M., Velázquez J.J.L. (1998) Self-similar blowup for a reaction-diffusion system. J. Comput. Appl. Math. 97: 99–119

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrero M.A., Velázquez J.J.L. (1992) Blow-up profiles in one-dimensional, semilinear parabolic problems. Commun. Partial Differ. Equ. 17: 205–219

    Article  MathSciNet  MATH  Google Scholar 

  16. Herrero M.A., Velázquez J.J.L. (1996) Singularity patterns in a chemotaxis model. Math. Ann. 306: 583–623

    Article  MathSciNet  MATH  Google Scholar 

  17. Horstmann D. (2003) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I. Jahresber. DMV 105: 103–165

    MathSciNet  MATH  Google Scholar 

  18. Horstmann D. (2004) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I. Jahresber. DMV 106: 51–69

    MathSciNet  MATH  Google Scholar 

  19. Jäger W., Luckhaus S. (1992) On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329: 819–824

    Article  MathSciNet  MATH  Google Scholar 

  20. Lepin L.A. (1988) Countable spectrum of eigen functions of a nonlinear heat-conduction equation with distributed parameters. Differ. Equ. 24: 799–805

    MATH  Google Scholar 

  21. Lepin L.A. (1990) Self-similar solutions of a semilinear heat equation.. Mat.Model. 2: 63–74 (in Russian)

    MathSciNet  MATH  Google Scholar 

  22. Liu W.-X. (1993) Blow-up behavior for semilinear heat equations: multi-dimensional case. Rocky Mountain J. Math. 23: 1287–1319

    Article  MathSciNet  MATH  Google Scholar 

  23. Merle F., Zaag H. (1998) Refined uniform estimates at blow-up and applications for nonlinear heat equa tions. Geom. Funct. Anal. 8: 1043–1085

    Article  MathSciNet  MATH  Google Scholar 

  24. Mizoguchi N., Senba T. (2007) Type II blowup solutions to a parabolic–elliptic system. Adv. Math. Sci. Appl. 17: 505–545

    MathSciNet  MATH  Google Scholar 

  25. Mizoguchi N., Senba T. (2011) A sufficient condition for type I blowup in a parabolic–elliptic system. J. Differ. Equ. 250: 182–203

    Article  MathSciNet  MATH  Google Scholar 

  26. Nagai T. (1995) Blow-up of radially symmetric solutions to a chemotaxis system. Adv.Math. Sci. Appl. 5: 581–601

    MathSciNet  MATH  Google Scholar 

  27. Quittner P., Souplet Ph. (2007) Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts Basel

    MATH  Google Scholar 

  28. Raphaël P., Schweyer R. (2014) On the stability of critical chemotactic aggregation. Math. Ann. 359: 267–377

    Article  MathSciNet  MATH  Google Scholar 

  29. Senba T. (2005) Blowup behavior of radial solutions to Jäger-Luckhaus system in high dimensional domain. Funkcial. Ekvac. 48: 247–271

    Article  MathSciNet  MATH  Google Scholar 

  30. Senba T., Suzuki T. (2001) Chemotactic collapse in a parabolic–elliptic system of mathematical biology. Adv. Differ. Equ. 6: 21–50

    MathSciNet  MATH  Google Scholar 

  31. Suzuki T., Suzuki T., Suzuki T., Suzuki T. (2004) Chemotactic collapse of radial solutions to Jäger-Luckhaus system. Adv. Math. Sci. Appl. 14: 241–250

    MathSciNet  MATH  Google Scholar 

  32. Souplet Ph. (2005) The Influence of Gradient Perturbations on Blow-up Asymptotics in Semilinear Parabolic Problems: A Survey Progress in Nonlinear Differential Equations and Their Applications 64, Birkhäuser, Boston, MA

    Book  MATH  Google Scholar 

  33. Souplet, Ph.: A simplified approach to the refined blow up behavior for the nonlinear heat equation. Preprint arXiv:hal-01721261 (2018)

  34. Suzuki T. (2005) Free Energy and Self-Interacting Particles Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Boston Inc., Boston, MA.

    Google Scholar 

  35. Velázquez J.J.L. (1992) Higher dimensional blow up for semilinear parabolic equations. Commun. Partial Differ. Equ. 17: 1567–1596

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is partially supported by the Labex inflamex (ANR project 10-LABX-0017), and by the Labex MME-DII (ANR project 11-LBX-0023-01). The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souplet, P., Winkler, M. Blow-up Profiles for the Parabolic–Elliptic Keller–Segel System in Dimensions \({n\geq 3}\). Commun. Math. Phys. 367, 665–681 (2019). https://doi.org/10.1007/s00220-018-3238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3238-1

Navigation