Communications in Mathematical Physics

, Volume 367, Issue 2, pp 665–681 | Cite as

Blow-up Profiles for the Parabolic–Elliptic Keller–Segel System in Dimensions \({n\geq 3}\)

  • Philippe Souplet
  • Michael WinklerEmail author


We study the blow-up asymptotics of radially decreasing solutions of the parabolic–elliptic Keller–Segel–Patlak system in space dimensions \( {n \geq 3}\). In view of the biological background of this system and of its mass conservation property, blowup is usually interpreted as a phenomenon of concentration or aggregation of the bacterial population. Understanding the asymptotic behavior of solutions at the blowup time is thus meaningful for the interpretation of the model. Under mild assumptions on the initial data, for \({n \geq 3}\), we show that the final profile satisfies \({{C}_{1}|{x}|^{-2}\leq u(x, T ) \leq {C}_{2}|x|^{-2}}\), with convergence in L1 as \({t\rightarrow T}\).This is in sharp contrast with the two-dimensional case, where solutions are known to concentrate to a Dirac mass at the origin (plus an integrable part). We also obtain refined space–time estimates of the form u(x, t) ≤  C(Tt + |x|2)−1 for type I blowup solutions. Previous work had shown that radial, self-similar blowup solutions (which satisfy the above estimates) exist in dimensions \( {n \geq 3}\) and do not exist in dimension 2. Our results thus reveal that the final profile displayed by these special solutions actually corresponds to a much more general phenomenon.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author is partially supported by the Labex inflamex (ANR project 10-LABX-0017), and by the Labex MME-DII (ANR project 11-LBX-0023-01). The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.


  1. 1.
    Bebernes J., Eberly D. (1988) A description of self-similar blow-up for dimensions \( {n \geq 3}\) Ann. Inst. H. Poincaré Anal. Non Linéaire 5: 1–21ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Biler P. (1995) Existence and nonexistence of solutions for a model of gravitational interaction of particles III. Colloq. Math. 68: 229–239MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biler P., Hilhorst D., Nadzieja T. (1994) Existence and nonexistence of solutions for a model of gravitational interaction of particles II. Colloq. Math. 67: 297–308MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Blanchet A., Dolbeault J., Perthame B. (2006) Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44: 1–33MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brenner M.P., Constantin P., Kadanoff L.P., Schenkel A., Venkataramani S.C. (1999) Diffusion, attraction and collapse. Nonlinearity 12: 1071–1098ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Budd C., Qi Y.-W. (1989) The existence of bounded solutions of a semilinear elliptic equation. J. Differ. Equ. 82: 207–218ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen Y.-G. (1990) Blow-up solutions of a semilinear parabolic equation with the Neumann and Robin boundary conditions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37: 537–574MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cieślak T., Winkler M. (2008) Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21: 1057–1076ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Corrias L., Perthame B., Zaag H. (2004) Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72: 1–29MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Friedman A., McLeod B. (1985) Blow-up of solutions of semilinear heat equations. Indiana Univ. Math. J. 34: 425–447MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Galaktionov V.A., Kurdyumov S.P., Samarskii A.A. (1984) Asymptotic stability of invariant solutions of nonlinear heat-conduction equation with sources. Differ. Equ. 20: 461–476Google Scholar
  12. 12.
    Giga Y., Mizoguchi N., Senba T. (2011) Asymptotic behavior of type I blowup solutions to a parabolic–elliptic system of drift-diffusion type. Arch. Ration. Mech. Anal. 201: 549–573MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guerra I.A., Peletier M.A. (2004) Self-similar blow-up for a diffusion–– attraction problem. Nonlinearity 17: 2137–2162ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Herrero M.A., Medina M., Velázquez J.J.L. (1998) Self-similar blowup for a reaction-diffusion system. J. Comput. Appl. Math. 97: 99–119MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Herrero M.A., Velázquez J.J.L. (1992) Blow-up profiles in one-dimensional, semilinear parabolic problems. Commun. Partial Differ. Equ. 17: 205–219MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Herrero M.A., Velázquez J.J.L. (1996) Singularity patterns in a chemotaxis model. Math. Ann. 306: 583–623MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Horstmann D. (2003) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I. Jahresber. DMV 105: 103–165MathSciNetzbMATHGoogle Scholar
  18. 18.
    Horstmann D. (2004) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I. Jahresber. DMV 106: 51–69MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jäger W., Luckhaus S. (1992) On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329: 819–824MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lepin L.A. (1988) Countable spectrum of eigen functions of a nonlinear heat-conduction equation with distributed parameters. Differ. Equ. 24: 799–805zbMATHGoogle Scholar
  21. 21.
    Lepin L.A. (1990) Self-similar solutions of a semilinear heat equation.. Mat.Model. 2: 63–74 (in Russian)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Liu W.-X. (1993) Blow-up behavior for semilinear heat equations: multi-dimensional case. Rocky Mountain J. Math. 23: 1287–1319MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Merle F., Zaag H. (1998) Refined uniform estimates at blow-up and applications for nonlinear heat equa tions. Geom. Funct. Anal. 8: 1043–1085MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mizoguchi N., Senba T. (2007) Type II blowup solutions to a parabolic–elliptic system. Adv. Math. Sci. Appl. 17: 505–545MathSciNetzbMATHGoogle Scholar
  25. 25.
    Mizoguchi N., Senba T. (2011) A sufficient condition for type I blowup in a parabolic–elliptic system. J. Differ. Equ. 250: 182–203MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nagai T. (1995) Blow-up of radially symmetric solutions to a chemotaxis system. Adv.Math. Sci. Appl. 5: 581–601MathSciNetzbMATHGoogle Scholar
  27. 27.
    Quittner P., Souplet Ph. (2007) Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts BaselzbMATHGoogle Scholar
  28. 28.
    Raphaël P., Schweyer R. (2014) On the stability of critical chemotactic aggregation. Math. Ann. 359: 267–377MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Senba T. (2005) Blowup behavior of radial solutions to Jäger-Luckhaus system in high dimensional domain. Funkcial. Ekvac. 48: 247–271MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Senba T., Suzuki T. (2001) Chemotactic collapse in a parabolic–elliptic system of mathematical biology. Adv. Differ. Equ. 6: 21–50MathSciNetzbMATHGoogle Scholar
  31. 31.
    Suzuki T., Suzuki T., Suzuki T., Suzuki T. (2004) Chemotactic collapse of radial solutions to Jäger-Luckhaus system. Adv. Math. Sci. Appl. 14: 241–250MathSciNetzbMATHGoogle Scholar
  32. 32.
    Souplet Ph. (2005) The Influence of Gradient Perturbations on Blow-up Asymptotics in Semilinear Parabolic Problems: A Survey Progress in Nonlinear Differential Equations and Their Applications 64, Birkhäuser, Boston, MACrossRefzbMATHGoogle Scholar
  33. 33.
    Souplet, Ph.: A simplified approach to the refined blow up behavior for the nonlinear heat equation. Preprint arXiv:hal-01721261 (2018)
  34. 34.
    Suzuki T. (2005) Free Energy and Self-Interacting Particles Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Boston Inc., Boston, MA. Google Scholar
  35. 35.
    Velázquez J.J.L. (1992) Higher dimensional blow up for semilinear parabolic equations. Commun. Partial Differ. Equ. 17: 1567–1596MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Analyse, Géométrie et ApplicationsCNRS UMR 7539, Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance
  2. 2.Institut für MathematikUniversität PaderbornPaderbornGermany

Personalised recommendations