Skip to main content
Log in

Braided Tensor Categories of Admissible Modules for Affine Lie Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the tensor category theory developed by Lepowsky, Zhang and the second author, we construct a braided tensor category structure with a twist on a semisimple category of modules for an affine Lie algebra at an admissible level. We conjecture that this braided tensor category is rigid and thus is a ribbon category. We also give conjectures on the modularity of this category and on the equivalence with a suitable quantum group tensor category. In the special case that the affine Lie algebra is \({\widehat{\mathfrak{sl}}_2}\), we prove the rigidity and modularity conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa, T., Creutzig, T., Linshaw, A.: W-algebras as coset vertex algebras. arXiv:01801.03822

  2. Auger, J., Creutzig, T., Ridout, D.: Modularity of logarithmic parafermion vertex algebras. Lett. Math. Phys. 1–45 (2018). arXiv:1704.05168

  3. Adamović D.: Some rational vertex algebras. Glas. Mat. Ser. III 29, 25–40 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Adamović D.: A construction of admissible A (1)1 modules of level −4/3. J. Pure Appl. Algebra 196, 119–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arakawa, T., Kawasetsu, K.: Quasi-lisse vertex algebras and modular linear differential equations. arXiv:1610.05865

  6. Axtell J., Lee K.-H.: Vertex operator algebras associated to type G affine Lie algebras. J. Algebra 337, 195–223 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adamović D., Milas A.: Vertex operator algebra associated to modular invariant representations for A (1)1 . Math. Res. Lett. 2, 563–575 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arakawa T.: Rationality of admissible affine vertex algebras in the category \({\theta}\). Duke Math. J. 165, 67–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Awata H., Yamada Y.: Fusion rules for the fractional level \({\widehat{\mathfrak{sl}}_2 (2,\mathbb{C}}\)) algebra. Mod. Phys. Lett. A 7, 1185 (1992)

    Article  ADS  MATH  Google Scholar 

  10. Bruguières A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann. 316(2), 215–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beem C., Lemos M., Liendo P., Peelaers W., Rastelli L., vanReesBalt C.: Infinite chiral symmetry in four dimensions. Commun. Math. Phys. 336(3), 1359–1433 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bernard D., Felder G.: Fock representations and BRST cohomology in SL(2) current algebra. Commun. Math. Phys. 127, 145–168 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Beilinson, A., Feigin, B., Mazur, B.: Introduction to algebraic field theory on curves, preprint, (1991)

  14. Bakalov B., Kirillov A Jr.: Lectures on tensor categories and modular functors University Lecture Series, vol. 21. Am. Math. Soc., Providence, RI (2001)

    MATH  Google Scholar 

  15. Belavin A., Polyakov A., Zamolodchikov A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Beem, C., Rastelli, L.: Vertex operator algebras, Higgs branches, and modular differential equations. arXiv:1707.07679

  17. Creutzig, T., Gaiotto, D.: Vertex algebras for S-duality. arXiv:1708.00875

  18. Creutzig, T., Kanade, S., Linshaw, A.: Simple current extensions beyond semi-simplicity. arXiv:1511.08754

  19. Creutzig, T., Kanade, S., Linshaw, A.R., Ridout, D.: Schur-Weyl Duality for Heisenberg Cosets, to appear in Transformation Groups, arXiv:1611.00305

  20. Creutzig, T., McRae, R., Kanade, S.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017

  21. Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \({\bar{u}^{H}_{q}(\mathfrak{sl}_{2}})\) and asymptotic dimensions of singlet vertex algebras. J. Pure Appl. Algebra 222, 3224–3247 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Creutzig T., Ridout D.: Modular data and verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865, 83–114 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Creutzig T., Ridout D.: Modular data and verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Creutzig T., Ridout D., Wood S.: Coset constructions of logarithmic (1, p) models. Lett. Math. Phys. 104, 553–583 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dong C., Li H., Mason G.: Vertex operator algebras associated to admissible representations of \({\widehat{\mathfrak{sl}(2,\mathbb{C})}}\). Commun. Math. Phys. 184, 65–93 (1997)

    Article  ADS  Google Scholar 

  26. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence, RI (2015)

    MATH  Google Scholar 

  27. Faltings G.: A proof for the Verlinde formula. J. Algebra Geom. 3, 347–374 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. In: Memoirs of the American Mathematical Society, vol. 104, p. 494. American Mathematical Society, Providence (1993) (preprint, 1989)

  29. Finkelberg, M.: Fusion categories, Ph.D. thesis, Harvard University, (1993)

  30. Finkelberg M.: An equivalence of fusion categories. Geom. Funct. Anal. 6, 249–267 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Finkelberg M.: Erratum to: An Equivalence of Fusion Categories. Geom. Funct. Anal. 23, 810–811 (2013)

    Article  MathSciNet  Google Scholar 

  32. Feigin, B., Malikov, F.: Modular functor and representation theory of \({\widehat{\mathfrak{sl}}_2}\) at a rational level, In: Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, pp. 357–405. American Mathematical Society, Providence (1997)

  33. Frenkel, I.B., Malikov, F.: Kazhdan–Lusztig tensoring and Harish–Chandra categories, arXiv:q-alg/9703010

  34. Frenkel I.B., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gaberdiel M.: Fusion rules and logarithmic representations of a WZW model at fractional level. Nucl. Phys. B618, 407–436 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gorelik M., Kac V.: On complete reducibility for infinite-dimensional Lie algebras. Adv. Math. 262(2), 1911–1972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang Y.-Z.: Two-dimensional conformal field theory and vertex operator algebra Progress in Math., 148. Birkhäuser,, Boston (1997)

    Google Scholar 

  38. Huang Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure. Appl. Algebra 100, 173–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Huang Y.-Z.: Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Algebra 182, 201–234 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Huang Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7, 375–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Huang Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Huang, Y.-Z.: On the applicability of logarithmic tensor category theory, arXiv:1702.00133

  44. Huang Y.-Z., Kirillov A., Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337, 1143–1159 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Huang, Y.-Z., Lepowsky, J.: Toward a theory of tensor products for representations of a vertex operator algebra. In: Catto, S., Rocha, A. (eds.), Proceedings of the 20th Internatinal Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, World Scientific, Singapore, vol. 1, pp. 344–354 (1992)

  46. Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, R., Brylinski, J.-L., Guillemin, V., Kac, V. (eds.), Lie Theory and Geometry, in Honor of Bertram Konstant, Birkhäuser, Boston, pp. 349–383 (1994)

  47. Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Mathematica, New Series 1, 699–756 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Mathematica, New Series 1, 757–786 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure. Appl. Algebra 100, 141–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, V (to appear)

  51. Huang Y.-Z., Lepowsky J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke Math. J. 99, 113–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Huang Y.-Z., Lepowsky J., Zhang L.: A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math. 17, 975–1012 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. I: Introduction and strongly graded algebras and their generalized modules. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.), Conformal Field Theories and Tensor Categories, Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, Mathematical Lectures from Beijing University, vol. 2, pp. 169–248. Springer, New York (2014)

  54. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196

  55. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197

  56. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. IV: Construction of tensor product bifunctors and the compatibility conditions, arXiv:1012.4198

  57. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. V: Convergence condition for intertwining maps and the corresponding compatibility condition, arXiv:1012.4199

  58. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. VI: Expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms, arXiv:1012.4202

  59. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. VII: Convergence and extension properties and applications to expansion for intertwining maps, arXiv:1110.1929

  60. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, arXiv:1110.1931

  61. Huang Y.-Z., Yang J.: Logarithmic intertwining operators and associative algebras. J. Pure Appl. Algebra 216, 1467–1492 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Iohara K., Koga Y.: Representation Theory of the Virasoro Algebra Springer Monographs in Mathematics. Springer, London (2011)

    Book  MATH  Google Scholar 

  63. Knapp A.W.: Representation Theory of Semisimple Groups. Princeton University Press, Princeton (1986)

    Book  MATH  Google Scholar 

  64. Kazhdan D., Lusztig G.: Affine Lie algebras and quatum groups. Int. Math. Res. Not. (in Duke Math. J.) 2, 21–29 (1991)

    Article  MATH  Google Scholar 

  65. Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, I. J. Am. Math.Soc. 6, 905–947 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  66. Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  67. Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  69. Kirillov A Jr., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}_{2}}\) conformal field theories. Adv. Math. 171, 183–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  70. Kac V.G., Wakimoto M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, 4956–4960 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Kac, V.G., Wakimoto, M.: Classification of modular invariant representations of affine algebras. In: Kac, V.G. (ed.) Infinite-Dimensional Lie Algebras and Groups, Proceedings of the Conference Held at CIRM, Luminy (1988)

  72. Knizhnik V., Zamolodchikov A.: Current algebra and Wess–Zumino models in two dimensions. Nuclear Phys. B 247, 83–103 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Li H.S.: An analogue of the Homfunctor and a generalized nuclear democracy theorem. Duke Math. J. 93, 73–114 (1998)

    Article  MathSciNet  Google Scholar 

  74. Li H.S.: Determining fusion rules by A(V)-modules and bimodules. J. Algebra 212, 515–556 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  75. Milas, A.: Weak modules and logarithmic intertwining operators for vertex operator algebras. In: Berman, S., Fendley, P., Huang, Y.-Z., Misra, K., Parshall, B. (eds.), Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, Contemporary Mathematics, vol. 297, pp. 201–225. American Mathematical Society, Providence (2002)

  76. McRae R.: Non-negative integral level affine Lie algebra tensor categories and their associativity isomorphism. Commun. Math. Phys. 346, 349–395 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Moore G., Seiberg N.: Classical and quatum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  ADS  MATH  Google Scholar 

  78. Ostrik V., Sun M.: Level-rank duality via tensor categories. Commun. Math. Phys. 326, 49–61 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Perše O.: Vertex operator algebras associated to type B affine Lie algebras on admissible half-integer levels. J. Algebra 307, 215–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Perše O.: Vertex operator algebras associated to certain admissible modules for affine Lie algebras of type A. Glas. Mat. Ser. III 43, 41–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ridout D.: Fusion in fractional level \({\mathfrak{sl}{(2)}}\) -theories with k = −2. Nucl. Phys. B 848, 216–250 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Ridout D.: \({\mathfrak{sl}{(2)}_{-1/2}}\) and the Triplet Model. Nucl. Phys. B 835, 314–342 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Ridout D.: \({\mathfrak{sl}{(2)}_{-1/2}}\): a case study. Nucl. Phys. B 814, 485–521 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Ridout D., Wood S.: Relaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl}}(2)\)models. Nucl. Phys. B 894, 621–664 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Sawin S.F.: Quantum groups at roots of unity and modularity. J. Knot Theory Ramif. 15(10), 1245–1277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  86. Teleman C.: Lie algebra cohomology and the fusion rules. Commum. Math. Phys. 173, 265–311 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory on P 1 and monodromy representations of braid group. In: Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math. vol. 16, pp. 297–372. Academic Press, Boston (1988)

  88. Turaev V.: Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Math. Vol. 18. Walter de Gruyter, Berlin (1994)

    Google Scholar 

  89. Wang W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 1993, 197–211 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  90. Yang, J.: Some results in the representation theory of strongly graded vertex algebras, Ph.D. thesis, Rutgers University (May 2014)

  91. Yang J.: Differential equations and logarithmic intertwining operators for strongly graded vertex algebra. Commun. Contempt. Math. 19(2), 1650009 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zhu Y.-C.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–307 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  93. Zhang L.: Vertex tensor category structure on a category of Kazhdan–Lusztig.N.Y. J. Math. 14, 261–284 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T. C. is supported by the Natural Sciences and Engineering Research Council of Canada (RES0020460). J. Y. is supported in part by an AMS-Simons travel Grant. J. Y. also wants to thank Zongzhu Lin for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Yang.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T., Huang, YZ. & Yang, J. Braided Tensor Categories of Admissible Modules for Affine Lie Algebras. Commun. Math. Phys. 362, 827–854 (2018). https://doi.org/10.1007/s00220-018-3217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3217-6

Navigation