Skip to main content
Log in

Wavepackets in Inhomogeneous Periodic Media: Propagation Through a One-Dimensional Band Crossing

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a model of an electron in a crystal moving under the influence of an external electric field: Schrödinger’s equation in one spatial dimension with a potential which is the sum of a periodic function V and a smooth function W. We assume that the period of V is much shorter than the scale of variation of W and denote the ratio of these scales by \({\epsilon}\). We consider the dynamics of semiclassical wavepacket asymptotic (in the limit \({\epsilon\downarrow 0)}\) solutions which are spectrally localized near to a crossing of two Bloch band dispersion functions of the periodic operator \({-\frac{1}{2} \partial^{2}_ {z} +V(z)}\). We show that the dynamics is qualitatively different from the case where bands are well-separated: at the time the wavepacket is incident on the band crossing, a second wavepacket is ‘excited’ which has opposite group velocity to the incident wavepacket. We then show that our result is consistent with the solution of a ‘Landau–Zener’-type model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I.: Elements of the theory of elliptic functions.In: Translations of Mathematical Monographs vol 79. American Mathematical Society, Providence (1990)

  2. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, (1976)

  3. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 392. 1802. The Royal Society, pp. 45–57 (1984)

  4. Borg G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differential gleichung durch die Eigenwerte. Acta Math. 78, 1–96 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, K.: Dispersive properties of Schrodinger equations. PhD Thesis. California Institute of Technology (2005)

  6. Carles R., Sparber C.: Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete Contin. Dyn. Syst. Ser. B 17(3), 759–774 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chai L., Jin S., Li Q.: Semiclassical models for the Schrödinger equation with periodic potentials and band crossings. Kinet. Relat. Models 6(3), 505–532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chai L., Jin S., Li Q., Morandi O.: A multiband semiclassical model for surface hopping quantum mechanics. Multiscale Model. Simul. 13(1), 205–230 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chandrasekharan K.S.: Elliptic Functions Grundlehren der Mathematischen Wissenschaften 281. Springer, Berlin (1985)

    Google Scholar 

  10. Duyckaerts T., Fermanian-Kammerer C., Jecko T.: Degenerated codimension 1 crossings and resolvent estimates. Asymptot. Anal. 65(3-4), 147–174 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Eastham M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press Ltd., London (1973)

    MATH  Google Scholar 

  12. Fefferman, C., Lee-Thorp, J.P., Weinstein, M.I.: Edge states in honeycomb structures. Ann. PDE 2, 12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fefferman, C., Lee-Thorp, J.P., Weinstein, M.I.:Honeycomb Schrödinger operators in the strong binding regime. Comm. Pure Appl. Math. 71(6), 1178–1270 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fefferman C.L., Lee-Thorp J.P., Weinstein M.I.: Topologically protected states in one-dimensional continuous systems and Dirac points. Proc. Natl. Acad. Sci. 111(24), 8759–8763 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures 2D Materials 3(1):014008 (2016)

  16. Fefferman C., L. , Weinstein M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math.Soc. 25(4), 1169–1220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fefferman C.L., Weinstein M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326(1), 251–286 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fermanian-Kammerer C., Gérard P.: Mesures semi-classiques et croisement de modes. Bull. Soc.Math. Fr. 130(1), 123–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fermanian-Kammerer C., Gérard P.: A Landau–Zener formula for nondegenerated involutive codimension 3 crossings. Annal. Henri Poincaré 4(3), 513–552 (2003)

    Article  ADS  MATH  Google Scholar 

  20. Fermanian-Kammerer C., Gérard P., Lasser C.: Wigner measure propagation and conical singularity for general initial data. Arch. Ration. Mech. Anal. 209(1), 209–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fermanian-Kammerer C., Lasser C.: Propagation through generic level crossings: a surface hopping semigroup. SIAM J. Math. Anal. 40(1), 103–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fermanian-Kammerer C., Lasser C.: An Egorov theorem for avoided crossings of eigenvalue surfaces. Commun. Math. Phys. 353(3), 1011–1057 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Fermanian-Kammerer C., Mehats F.: Akinetic model for the transport of electrons in a graphene layer. J. Comput. Phys. 327, 450–483 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gérard P.: Mesures semi-classiques et croisement de modes. Séminaire Équations aux dérivées partielles (Polytechnique) 16, 1–9 (1990)

    Google Scholar 

  25. Gérard P., Markowich P.A., Mauser N.J., Poupaud F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50(4), 323–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hagedorn G.A.: Proof of the Landau–Zener formula in an adiabatic limit with small eigenvalue gaps. Commun. Math. Phys. 136(3), 443–449 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hagedorn G.A.: Molecular Propagation Through Electron Energy Level Crossings Memoirs of the American Mathematical Society, Vol. 536. American Mathematical Society, Providence (1994)

    Google Scholar 

  28. Hagedorn G.A., Joye A.: Landau–Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Ann. Phys. Théorique. 68(1), 85–134 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Hochstadt H.: the characterization of a Hill’s equation from its spectrum. Arch. Ration. Mech. Anal. 19, 353–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hochstadt H.: On the determination of a Hill’s equation from its spectrum II. Arch. Ration. Mech. Anal. 23(3), 237–238 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jecko T.: Semiclassical resolvent estimates for Schrödinger matrix operators with eigenvalues crossing. Math. Nachr. 257(1), 36–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Joye A.: Proof of the Landau–Zener formula. Asymptot. Anal. 9(3), 209–258 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Kuchment P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53(3), 343–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Landau L.: Zur Theorie der Energieübertragung. II. Phys. Soviet Union 2, 46–51 (1932)

    MATH  Google Scholar 

  35. Lasser C., Teufel S.: Propagation through conical crossings: an asymptotic semigroup. Commun. Pure Appl. Anal. 58(9), 1188–1230 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Magnus W., Winkler S.: Hill’s Equation. Wiley, New York (1966)

    MATH  Google Scholar 

  37. Nakamura H.: Nonadiabatic transition: Concepts, Basic Theories and Applications. World Scientific Publishing Co. Pte. Ltd, Singapore (2002)

    Book  Google Scholar 

  38. Pöschel J., Trubowitz E.: Inverse Spectral Theory Pure and Applied Mathematics 130. Academic Press, Cambridge (1987)

    MATH  Google Scholar 

  39. Poupaud F., Ringhofer C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Commun. Partial Differ. Equ. 21(11-12), 1897–1918 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Reed M., Simon B.: Methods of modern mathematical physics, IV: analysis of operators. Academic press, Cambridge (1977)

    MATH  Google Scholar 

  41. Schubert R., Vallejos R.O., Toscano F.: How do wave packets spread? Time evolution on Ehrenfest time scales. J. Phys. A Math. Theor. 45(21), 215–307 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simon B.: On the genericity of nonvanishing instability intervals in Hills equation. Ann. Sect. A 24(1), 91–93 (1976)

    MathSciNet  MATH  Google Scholar 

  43. Colin de Verdiere, Y.: The level crossing problem in semi-classical analysis I. The symmetric case. Ann.Inst. Fourier 53(4), 1023–1054 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Colin de Verdiere Y.: The level crossing problem in semi-classical analysis II. The Hermitian case. Ann. Inst. Fourier 54(5), 1423–1441 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Colin de Verdiere, Y., Lombardi, M., Pollet, J.: The microlocal Landau-Zener formula. Ann. Phys. Théorique 71(1), 95–127 (1999)

    MathSciNet  MATH  Google Scholar 

  46. Watson, A.B.: Wave dynamics in locally periodic structures by multiscale analysis. PhD Thesis. https://doi.org/10.7916/D89W0SSM : Columbia University, (2017)

  47. Watson A.B., Lu J., Weinstein M.I.: Wavepackets in inhomogeneous periodic media: Effective particle field dynamics and Berry curvature. J. Math. Phys. 58(2), 021503 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Whittaker E.T., Watson G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1902)

    MATH  Google Scholar 

  49. Zener C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 137(833), 696–702 (1932)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank George Hagedorn, Jianfeng Lu, and Christof Sparber for stimulating discussions. This research was supported in part by National Science Foundation Grant Nos. DMS-1412560, DMS-1620418 and Simons Foundation Math + X Investigator Award #376319 (Michael I. Weinstein).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Weinstein.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, A., Weinstein, M.I. Wavepackets in Inhomogeneous Periodic Media: Propagation Through a One-Dimensional Band Crossing. Commun. Math. Phys. 363, 655–698 (2018). https://doi.org/10.1007/s00220-018-3213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3213-x

Navigation