Abstract
We consider a model of an electron in a crystal moving under the influence of an external electric field: Schrödinger’s equation in one spatial dimension with a potential which is the sum of a periodic function V and a smooth function W. We assume that the period of V is much shorter than the scale of variation of W and denote the ratio of these scales by \({\epsilon}\). We consider the dynamics of semiclassical wavepacket asymptotic (in the limit \({\epsilon\downarrow 0)}\) solutions which are spectrally localized near to a crossing of two Bloch band dispersion functions of the periodic operator \({-\frac{1}{2} \partial^{2}_ {z} +V(z)}\). We show that the dynamics is qualitatively different from the case where bands are well-separated: at the time the wavepacket is incident on the band crossing, a second wavepacket is ‘excited’ which has opposite group velocity to the incident wavepacket. We then show that our result is consistent with the solution of a ‘Landau–Zener’-type model.
This is a preview of subscription content, access via your institution.
References
Akhiezer, N.I.: Elements of the theory of elliptic functions.In: Translations of Mathematical Monographs vol 79. American Mathematical Society, Providence (1990)
Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, (1976)
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 392. 1802. The Royal Society, pp. 45–57 (1984)
Borg G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differential gleichung durch die Eigenwerte. Acta Math. 78, 1–96 (1946)
Cai, K.: Dispersive properties of Schrodinger equations. PhD Thesis. California Institute of Technology (2005)
Carles R., Sparber C.: Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete Contin. Dyn. Syst. Ser. B 17(3), 759–774 (2012)
Chai L., Jin S., Li Q.: Semiclassical models for the Schrödinger equation with periodic potentials and band crossings. Kinet. Relat. Models 6(3), 505–532 (2013)
Chai L., Jin S., Li Q., Morandi O.: A multiband semiclassical model for surface hopping quantum mechanics. Multiscale Model. Simul. 13(1), 205–230 (2015)
Chandrasekharan K.S.: Elliptic Functions Grundlehren der Mathematischen Wissenschaften 281. Springer, Berlin (1985)
Duyckaerts T., Fermanian-Kammerer C., Jecko T.: Degenerated codimension 1 crossings and resolvent estimates. Asymptot. Anal. 65(3-4), 147–174 (2009)
Eastham M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press Ltd., London (1973)
Fefferman, C., Lee-Thorp, J.P., Weinstein, M.I.: Edge states in honeycomb structures. Ann. PDE 2, 12 (2016)
Fefferman, C., Lee-Thorp, J.P., Weinstein, M.I.:Honeycomb Schrödinger operators in the strong binding regime. Comm. Pure Appl. Math. 71(6), 1178–1270 (2018)
Fefferman C.L., Lee-Thorp J.P., Weinstein M.I.: Topologically protected states in one-dimensional continuous systems and Dirac points. Proc. Natl. Acad. Sci. 111(24), 8759–8763 (2014)
Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures 2D Materials 3(1):014008 (2016)
Fefferman C., L. , Weinstein M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math.Soc. 25(4), 1169–1220 (2012)
Fefferman C.L., Weinstein M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326(1), 251–286 (2014)
Fermanian-Kammerer C., Gérard P.: Mesures semi-classiques et croisement de modes. Bull. Soc.Math. Fr. 130(1), 123–168 (2002)
Fermanian-Kammerer C., Gérard P.: A Landau–Zener formula for nondegenerated involutive codimension 3 crossings. Annal. Henri Poincaré 4(3), 513–552 (2003)
Fermanian-Kammerer C., Gérard P., Lasser C.: Wigner measure propagation and conical singularity for general initial data. Arch. Ration. Mech. Anal. 209(1), 209–236 (2013)
Fermanian-Kammerer C., Lasser C.: Propagation through generic level crossings: a surface hopping semigroup. SIAM J. Math. Anal. 40(1), 103–133 (2008)
Fermanian-Kammerer C., Lasser C.: An Egorov theorem for avoided crossings of eigenvalue surfaces. Commun. Math. Phys. 353(3), 1011–1057 (2017)
Fermanian-Kammerer C., Mehats F.: Akinetic model for the transport of electrons in a graphene layer. J. Comput. Phys. 327, 450–483 (2016)
Gérard P.: Mesures semi-classiques et croisement de modes. Séminaire Équations aux dérivées partielles (Polytechnique) 16, 1–9 (1990)
Gérard P., Markowich P.A., Mauser N.J., Poupaud F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50(4), 323–379 (1997)
Hagedorn G.A.: Proof of the Landau–Zener formula in an adiabatic limit with small eigenvalue gaps. Commun. Math. Phys. 136(3), 443–449 (1991)
Hagedorn G.A.: Molecular Propagation Through Electron Energy Level Crossings Memoirs of the American Mathematical Society, Vol. 536. American Mathematical Society, Providence (1994)
Hagedorn G.A., Joye A.: Landau–Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Ann. Phys. Théorique. 68(1), 85–134 (1998)
Hochstadt H.: the characterization of a Hill’s equation from its spectrum. Arch. Ration. Mech. Anal. 19, 353–611 (1965)
Hochstadt H.: On the determination of a Hill’s equation from its spectrum II. Arch. Ration. Mech. Anal. 23(3), 237–238 (1966)
Jecko T.: Semiclassical resolvent estimates for Schrödinger matrix operators with eigenvalues crossing. Math. Nachr. 257(1), 36–54 (2003)
Joye A.: Proof of the Landau–Zener formula. Asymptot. Anal. 9(3), 209–258 (1994)
Kuchment P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53(3), 343–414 (2016)
Landau L.: Zur Theorie der Energieübertragung. II. Phys. Soviet Union 2, 46–51 (1932)
Lasser C., Teufel S.: Propagation through conical crossings: an asymptotic semigroup. Commun. Pure Appl. Anal. 58(9), 1188–1230 (2005)
Magnus W., Winkler S.: Hill’s Equation. Wiley, New York (1966)
Nakamura H.: Nonadiabatic transition: Concepts, Basic Theories and Applications. World Scientific Publishing Co. Pte. Ltd, Singapore (2002)
Pöschel J., Trubowitz E.: Inverse Spectral Theory Pure and Applied Mathematics 130. Academic Press, Cambridge (1987)
Poupaud F., Ringhofer C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Commun. Partial Differ. Equ. 21(11-12), 1897–1918 (1996)
Reed M., Simon B.: Methods of modern mathematical physics, IV: analysis of operators. Academic press, Cambridge (1977)
Schubert R., Vallejos R.O., Toscano F.: How do wave packets spread? Time evolution on Ehrenfest time scales. J. Phys. A Math. Theor. 45(21), 215–307 (2012)
Simon B.: On the genericity of nonvanishing instability intervals in Hills equation. Ann. Sect. A 24(1), 91–93 (1976)
Colin de Verdiere, Y.: The level crossing problem in semi-classical analysis I. The symmetric case. Ann.Inst. Fourier 53(4), 1023–1054 (2003)
Colin de Verdiere Y.: The level crossing problem in semi-classical analysis II. The Hermitian case. Ann. Inst. Fourier 54(5), 1423–1441 (2004)
Colin de Verdiere, Y., Lombardi, M., Pollet, J.: The microlocal Landau-Zener formula. Ann. Phys. Théorique 71(1), 95–127 (1999)
Watson, A.B.: Wave dynamics in locally periodic structures by multiscale analysis. PhD Thesis. https://doi.org/10.7916/D89W0SSM : Columbia University, (2017)
Watson A.B., Lu J., Weinstein M.I.: Wavepackets in inhomogeneous periodic media: Effective particle field dynamics and Berry curvature. J. Math. Phys. 58(2), 021503 (2017)
Whittaker E.T., Watson G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1902)
Zener C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 137(833), 696–702 (1932)
Acknowledgements
The authors wish to thank George Hagedorn, Jianfeng Lu, and Christof Sparber for stimulating discussions. This research was supported in part by National Science Foundation Grant Nos. DMS-1412560, DMS-1620418 and Simons Foundation Math + X Investigator Award #376319 (Michael I. Weinstein).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Spohn
Rights and permissions
About this article
Cite this article
Watson, A., Weinstein, M.I. Wavepackets in Inhomogeneous Periodic Media: Propagation Through a One-Dimensional Band Crossing. Commun. Math. Phys. 363, 655–698 (2018). https://doi.org/10.1007/s00220-018-3213-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-018-3213-x