Abstract
We prove a system of relations in the Grothendieck ring of the category \({\mathcal{O}}\) of representations of the Borel subalgebra of an untwisted quantum affine algebra \({U_q(\widehat{\mathfrak{g}})}\) introduced in Hernandez and Jimbo (Compos Math 148:1593–1623, 2012). This system was discovered, under the name \({Q\widetilde{Q}}\)-system, in Masoero et al. (Commun Math Phys 344:719–750, 2016; Commun Math Phys 349:1063–1105, 2017), where it was shown that solutions of this system can be attached to certain \({^L\widehat{\mathfrak{g}}}\)-affine opers, introduced in Feigin and Frenkel (Adv Stud Pure Math 61:185–274, 2007), where \({^L\widehat{g}}\) is the Langlands dual affine Kac–Moody algebra of \({\widehat{\mathfrak{g}}}\). Together with the results of Bazhanov et al. (Commun Math Phys 200:297–324, 1999; Nucl Phys B 622:475–547 2002) which enable one to associate quantum \({\widehat{\mathfrak{g}}}\)-KdV Hamiltonians to representations from the category \({\mathcal{O}}\), this provides strong evidence for the conjecture of Feigin and Frenkel (Adv Stud Pure Math 61:185–274, 2007) linking the spectra of quantum \({\widehat{\mathfrak{g}}}\)-KdV Hamiltonians and \({^L\widehat{\mathfrak{g}}}\)-affine opers. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition. We also conjecture analogues of these results for the twisted quantum affine algebras and elucidate the notion of opers for twisted affine algebras, making a connection to twisted opers introduced in Frenkel and Gross (Ann Math 170:1469–1512, 2009).
This is a preview of subscription content, access via your institution.
References
Bazhanov V.V., Hibberd A.N., Khoroshkin S.M.: Integrable structure of \({{\mathcal W}_3}\) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory. Nucl. Phys. B 622, 475–547 (2002)
Bazhanov V., Lukyanov S., Zamolodchikov A.: Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe Ansatz. Commun. Math. Phys. 177, 381–398 (1996)
Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. II. Q-operator and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)
Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Integrable structure of conformal field theory. III. The Yang–Baxter Relations. Commun. Math. Phys. 200, 297–324 (1999)
Bazhanov V., Lukyanov S., Zamolodchikov A.: Spectral determinants for Schrödinger equation and Q-operators of conformal field theory. J. Stat. Phys. 102, 567–576 (2001)
Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B.: Higher-level eigenvalues of Q-operators and Schrodinger equation. Adv. Theor. Math. Phys. 7, 711–725 (2003)
Bazhanov V.V., Frassek R., Lukowski T., Meneghelli C., Staudacher M.: Baxter Q-operators and representations of Yangians. Nucl. Phys. B 850, 148–174 (2011)
Bazhanov V.V., Reshetikhin N.Yu.: Restricted solid on solid models connected with simply laced Lie algebra. J. Phys. A 23, 477–1492 (1990)
Beck J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994)
Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s Integrable System and Hecke Eigensheaves. www.math.uchicago.edu/~arinkin/langlands
Beilinson, A., Drinfeld, V.: Opers, Preprint arXiv:math.AG/0501398.
Chari, V., Hernandez D.: Beyond Kirillov–Reshetikhin modules. In: Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications, Contemporary Mathematics, vol. 506, pp. 49–81. AMS Providence (2010)
Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)
Dorey P., Dunning C., Masoero D., Suzuki J., Tateo R.: Pseudo-differential equations, and the Bethe Ansatz for the classical Lie algebras. Nucl. Phys. B772, 249–289 (2007)
Dorey P., Dunning C., Tateo R.: Differential equations for general SU(n) Bethe ansatz systems. J. Phys. A 33, 8427–8442 (2000)
Dorey P., Dunning C., Tateo R.: The ODE/IM correspondence. J. Phys. A40, R205 (2007)
Dorey P., Tateo R.: Anharmonic oscillators, the thermodynamic Bethe ansatz, and nonlinear integral equations. J. Phys. A32, L419–L425 (1999)
Dorey P., Tateo R.: On the relation between Stokes multipliers and the T–Q systems of conformal field theory. Nucl. Phys. B563, 573–602 (1999)
Drinfel’d V.: A new realization of Yangians and of quantum affine algebras. Sov. Math. Dokl. 36, 212–216 (1988)
Drinfeld V., Sokolov V.: Lie algebras and KdV type equations. J. Sov. Math. 30, 1975–2036 (1985)
Eguchi T., Yang S.-K.: Deformations of conformal field theories and soliton equations. Phys. Lett. 224B, 373–378 (1989)
Feigin B., Frenkel E.: Representations of affine Kac–Moody algebras, bosonization and resolutions. Lett. Math. Phys. 19, 307–317 (1990)
Feigin B., Frenkel E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B246, 75–81 (1990)
Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand-Dikii algebras. In: Tsuchiya, A., Eguchi, T., Jimbo, M. (eds) Infinite Analysis, Advances Series in Mathematical Physics, vol. 16, pp. 197–215. World Scientific, Singapore (1992)
Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. In: Proceedings of the C.I.M.E. School Integrable Systems and Quantum Groups, Italy, June 1993, Lecture Notes in Mathematics, vol. 1620. Springer (1995). arXiv:hep-th/9310022
Feigin, B., Frenkel, E.: Quantization of soliton systems and Langlands duality. In: Exploration of New Structures and Natural Constructions in Mathematical Physics. Advanced Studies in Pure Mathematics 61, Mathematics Society, Japan, Tokyo, pp. 185–274 (2007). arXiv:0705.2486
Feigin B., Frenkel E., Reshetikhin N.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys. 166, 27–62 (1994)
Feigin, B., Frenkel, E., Smirnov, F.: unpublished
Feigin B., Frenkel E., Toledano Laredo V.: Gaudin models with irregular singularities. Adv. Math. 223, 873–948 (2010)
Feigin B., Jimbo M., Miwa T., Mukhin E.: Finite type modules and Bethe Ansatz for quantum toroidal gl(1). Commun. Math. Phys. 356, 285–327 (2017)
Frenkel, E.: Affine algebras, Langlands duality and Bethe Ansatz. In: Iagolnitzer, D. (ed) Proceedings of the International Congress of Mathematical Physics, Paris, 1994, pp. 606–642, International Press (1995). arXiv:q-alg/9506003
Frenkel, E.: Langlands Correspondence for Loop Groups, Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press (2007)
Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 2nd edn, vol. 88. AMS, (2004)
Frenkel E., Gross B.: A rigid irregular connection on the projective line. Ann. Math. 170, 1469–1512 (2009)
Frenkel E., Hernandez D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164, 2407–2460 (2015)
Frenkel E., Mukhin E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)
Frenkel E., Reshetikhin N.: The q-characters of representations of quantum affine algebras and deformations of W-algebras, in Recent Developments in Quantum Affine Algebras and related topics. Contemp. Math. 248, 163–205 (1999) arXiv:math/9810055
Frenkel, E., Zhu, X.: Gerbal Representations of Double Loop Groups, Int. Math. Res. Not. 17: 3929–4013 (2012). arXiv:0810.1487
Hernandez D.: The Kirillov–Reshetikhin conjecture and solutions of T-systems. J. Reine Angew. Math. 596, 63–87 (2006)
Hernandez D.: Smallness problem for quantum affine algebras and quiver varieties. Ann. Scient. Éc. Norm. Sup. 41, 271–306 (2008)
Hernandez D.: On minimal affinizations of representations of quantum groups. Commun. Math. Phys. 277, 221–259 (2007)
Hernandez, D.: Kirillov–Reshetikhin conjecture: the general case. Int. Math. Res. Not. 2010, 149–193
Hernandez D., Jimbo M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148, 1593–1623 (2012)
Hernandez D., Leclerc B.: Cluster algebras and quantum affine algebras. Duke Math. J. 154, 265–341 (2010)
Hernandez D., Leclerc B.: Cluster algebras and category \({\mathcal{O}}\) for representations of Borel subalgebras of quantum affine algebras. Algebra Number Theory 10, 2015–2052 (2016)
Inoue R., Iyama O., Kuniba A., Nakanishi T., Suzuki J.: Periodicities of T-systems and Y-systems. Nagoya Math. J. 197, 59–174 (2010)
Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
Kojima T.: The Baxter’s Q operator for the W algebra W N. J. Phys. A 41, 355206 (2008)
Kuniba A., Suzuki J.: Analytic Bethe Ansatz for fundamental representations of Yangians. Commun. Math. Phys. 173, 225–264 (1995)
Kuniba A., Suzuki J.: Functional relations and analytic Bethe ansatz for twisted quantum affine algebras. J. Phys. A 28, 711–722 (1995)
Kuperschmidt B.A., Mathieu P.: Quantum KdV like equations and perturbed conformal field theories. Phys. Lett. B227, 245–250 (1989)
Leclerc, B.: Quantum loop algebras, quiver varieties, and cluster algebras. In: Skowroński, A., Yamagata, K. (eds) Representations of Algebras and Related Topics, European Mathematical Society Series of Congress Reports, pp. 117–152 (2011)
Masoero D., Raimondo A., Valeri D.: Bethe Ansatz and the spectral theory of affine Lie algebra-valued connections. The simply-laced case. Commun. Math. Phys. 344, 719–750 (2016)
Masoero D., Raimondo A., Valeri D.: Bethe Ansatz and the spectral theory of affine Lie algebra-valued connections, The non simply-laced case. Commun. Math. Phys. 349, 1063–1105 (2017)
Nekrasov N., Pestun V., Shatashvili S.: Quantum geometry and quiver gauge theories. Commun. Math. Phys. 357, 357–519 (2018)
Reyman A., Semenov-Tian-Shansky M.: Algebras of flows and nonlinear partial differential equations. Sov. Math. Dokl. 21, 630–634 (1980)
Reyman, A., Semenov-Tian-Shansky, M.: Integrable Systems (group-theoretical approach), Moscow–Izhevsk. RCD Publishing House, Institute of Computer Studies (2003) (in Russian)
Reyman A., Semenov-Tian-Shansky M., Frenkel I.: Graded Lie algebras and completely integrable dynamical systems. Sov. Math. Dokl. 20, 811–814 (1979)
Reshetikhin N.: A method of functional equations in the theory of exactly solvable quantum systems. Lett. Math. Phys. 7, 205–213 (1983)
Reshetikhin N.: Integrable models of quantum one-dimensional magnets with O(N) and Sp(2k) Symmetry. Theor. Math. Phys. 63, 555–569 (1985)
Reshetikhin N.: The spectrum of the transfer matrices connected with Kac–Moody algebras. Lett. Math. Phys. 14, 235–246 (1987)
Sun J.: Polynomial relations for q-characters via the ODE/IM correspondence. SIGMA 8, 028 (2012)
Zamolodchikov A.: Integrable field theory from conformal field theory. Adv. Stud. Pure Math. 19, 641–674 (1989)
Acknowledgement
We are grateful to Davide Masoero and Andrea Raimondo for fruitful discussions and explanations about their work [MRV1,MRV2], which was the main motivation for this paper. We also thank them for raising a question about the meaning of our formula for \({^L\widehat{g}}\)-opers in the non-simply laced case, which helped us to formulate it more precisely (Sect. 8.6).We thank Bernard Leclerc for his comments on the first version of this paper, and the referees for their thorough reading of the paper and useful comments. E. Frenkel was supported by the NSF Grant DMS-1201335. D. Hernandez was supported in part by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement No. 647353 QAffine.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by N. Nekrasov
2018 by the authors. This article may be reproduced in its entirety for non-commercial purposes.
Rights and permissions
About this article
Cite this article
Frenkel, E., Hernandez, D. Spectra of Quantum KdV Hamiltonians, Langlands Duality, and Affine Opers. Commun. Math. Phys. 362, 361–414 (2018). https://doi.org/10.1007/s00220-018-3194-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-018-3194-9