Skip to main content
Log in

On Percolation of Two-Dimensional Hard Disks

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let QL =  [−L, L]2 be a square in the plane \({\mathbb{R}^{2}}\) . We consider the hard-core model with arbitrary boundary conditions in which a random set of non-intersecting unit disks (i.e., a packing) with centers in QL is sampled. The density of the packing is controlled by the an intensity parameter \({\lambda}\) similarly to the Poisson point process. Given \({\epsilon}\) > 0, we consider the random graph \({{G}_{\epsilon}}\) in which disks (the vertices) are connected by an edge if they are at distance ≤ \({\epsilon}\) from each other.We prove that G is highly connected when \({\lambda}\) is greater than a certain threshold λ0 =  λ0(\({\epsilon}\)). Namely, given a square annulus with inner radius L1 and outer radius L2 (L1 < L2 < L), the probability that the annulus is crossed by \({{G}_{\epsilon}}\) is at least 1 − C exp(−cL1). We also extend our results to random packings of disks in the entire plane using the well-known notion of a Gibbs state. We show that a random graph \({{G}_{\epsilon}}\) corresponding to any Gibbs state almost surely has an infinite connected component whenever the intensity parameter \({\lambda}\) satisfies \({\lambda > \lambda_0}\) \({(\epsilon}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aristoff D.: Percolation of hard disks. J. Appl. Probab. 51(1), 235–246 (2014)

    Article  MathSciNet  Google Scholar 

  2. Balister P.N., Bollobás B.: Counting regions with bounded surface area. Commun. Math. Phys. 273(2), 305–315 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Blanc, X., Lewin, M.: The crystallization conjecture: a review (2015). arXiv:1504.01153

    Article  MathSciNet  Google Scholar 

  4. Bowen L., Lyons R., Radin C., Winkler P.: A Solidification Phenomenon in Random Packings. SIAM J. Math. Anal. 38(4), 1075–1089 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cohn H., Elkies N.: New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)

    Article  MathSciNet  Google Scholar 

  6. Fejes Tóth L.: Lagerungen in der Ebene, auf der Kugel und in Raum. Springer, New York (1953)

    Book  Google Scholar 

  7. Hales T.C.: A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  Google Scholar 

  8. Harris T.E.: A lower bound for the critical probability in a certain percolation process.Math. Proc. Camb. Philos. Soc. 56(1), 13–20 (1960)

    Article  ADS  Google Scholar 

  9. Jansen, S.: Continuum percolation for Gibbsian point processes with attractive interactions. Electron. J. Probab. 21, paper no. 47 (2016)

  10. Kingman J.F.C.: Poisson Processes. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  11. Lebowitz J.L., Mazel A.E.: Improved Peierls argument for high-dimensional Ising models. J. Stat. Phys. 90(3), 1051–1059 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Mase S., Møller J., Stoyan D., Waagepetersen R.P., Döge G.: Packing densities and simulated tempering for hard core Gibbs point processes. Ann. Inst. Stat. Math. 53(4), 661–680 (2001)

    Article  MathSciNet  Google Scholar 

  13. Richthammer T.: Translation-invariance of two-dimensional Gibbsian point processes. Commun. Math. Phys. 274, 81–122 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Rogers C.A.: The packing of equal spheres. Proc. Lond. Math. Soc. 3(4), 609–620 (1958)

    Article  MathSciNet  Google Scholar 

  15. Ruelle D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  Google Scholar 

  16. Stucki, K.: Continuum percolation for Gibbs point processes. Electron. Commun. Probab. 18, paper no. 67 (2013). arXiv:1305.0492

  17. Thue, A.: Omnogle geometrisk-taltheoretiske Theoremer. Forhdl. skandinaviske naturforskeres, 352–353 (1892)

  18. Viazovska M.: The sphere packing problem in dimension 8. Ann. Math. 185(3), 991–1015 (2017) arXiv:1603.04246

    Article  MathSciNet  Google Scholar 

  19. Cohn H., Kumar A., Miller S.D., Radchenko D., Viazovska M.: The sphere packing problem in dimension 24. Ann. Math 185, 1017–1033 (2017) arXiv:1603.06518

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is thankful to A. Sodin, R. Peled and N. Chandgotia for discussion that helped improving the earlier versions of the paper. The research is supported in part by ERC Starting Grant 678520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Magazinov.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magazinov, A. On Percolation of Two-Dimensional Hard Disks. Commun. Math. Phys. 364, 1–43 (2018). https://doi.org/10.1007/s00220-018-3193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3193-x

Navigation