Skip to main content

Coarsening Model on \({\mathbb{Z}^{d}}\) with Biased Zero-Energy Flips and an Exponential Large Deviation Bound for ASEP


We study the coarsening model (zero-temperature Ising Glauber dynamics) on \({\mathbb{Z}^{d}}\) (for \({d \geq 2}\)) with an asymmetric tie-breaking rule. This is a Markov process on the state space \({\{-1,+1\}^{{\mathbb{Z}}^d}}\) of “spin configurations” in which each vertex updates its spin to agree with a majority of its neighbors at the arrival times of a Poisson process. If a vertex has equally many +1 and −1 neighbors, then it updates its spin value to +1 with probability \({q \in [0,1]}\) and to −1 with probability 1 − q. The initial state of this Markov chain is distributed according to a product measure with probability p for a spin to be +1. In this paper, we show that for any given \({p > 0}\), there exist q close enough to 1 such that a.s. every spin has a limit of +1. This is of particular interest for small values of p, for which it is known that if \({q = 1/2}\), a.s. all spins have a limit of −1. For dimension d = 2, we also obtain near-exponential convergence rates for q sufficiently large, and for general d, we obtain stretched exponential rates independent of d. Two important ingredients in our proofs are refinements of block arguments of Fontes–Schonmann–Sidoravicius and a novel exponential large deviation bound for the Asymmetric Simple Exclusion Process.

This is a preview of subscription content, access via your institution.


  1. AL

    Aizenman M., Lebowitz J.L.: Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. Arr

    Arratia R.: Site recurrence for annihilating random walks on Z d. Ann. Probab. 11, 706–713 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  3. BCOTT

    Benjamini I., Chan S.-O., O’Donnell R., Tamuz O., Tan L.-Y.: Convergence, unanimity, and disagreement in majority dynamics on unimodular graphs and random graphs. Stoch. Process. Appl. 126, 2719–2733 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  4. BPP

    Balogh J., Peres Y., Pete G.: Bootstrap percolation on infinite trees and nonamenable groups. Comb. Probab. Comput. 15, 715–730 (2006)

    Article  MATH  Google Scholar 

  5. Bor

    Bornemann F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79(270), 871–915 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. CMST

    Caputo P., Martinelli F., Simenhaus F., Toninelli F.L.: “Zero” temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion. Commun. Pure Appl. Math. 64, 0778–0831 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  7. CRL

    Chalupa J., Reich G.R., Leath P.L.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12, L31–L35 (1979)

    Article  Google Scholar 

  8. DEKMS

    Damron M., Eckner S.M., Kogan H., Newman C.M., Sidoravicius V.: Coarsening dynamics on \({\mathbb{Z}^d}\) with frozen vertices. J. Stat. Phys. 160, 60–72 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. FSS

    Fontes L.R., Schonmann R.H., Sidoravicius V.: Stretched exponential fixation in stochastic Ising models at zero temperature. Commun. Math. Phys. 228, 495–518 (2002)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. Joh

    Johansson K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. Lac1

    Lacoin H.: Approximate Lifshitz law for the zero-temperature stochastic Ising model in any dimension. Commun. Math. Phys. 318, 291–305 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. Lac2

    Lacoin, H.: The scaling limit for zero-temperature planar Ising droplets: with and without magnetic fields. In: Topics in Percolative and Disordered Systems, Springer Proceedings in Mathematics and Statistics, vol. 69, pp. 85–120 (2014)

  13. Lig

    Liggett, T.: Interacting Particle Systems. [Reprint of the 1985 original.] Springer, Berlin (2005)

  14. Mor

    Morris R.: Zero-temperature Glauber dynamics on \({\mathbb{Z}^d}\). Probab. Theory Relat. Fields 149, 417–434 (2011)

    Article  MATH  Google Scholar 

  15. NNS

    Nanda, S., Newman, C.M., Stein, D.L.: Dynamics of Ising spin systems at zero temperature. In: Minlos, R., Shlosman, S., Suhov, Y. (eds.), On Dobrushin’s Way (from Probability Theory to Statistical Mechnics). American Mathematical Society Translations, Series II, vol. 198, pp. 183–193 (2000)

  16. OKR

    Olejarz J., Krapivsky P.L., Redner S.: Zero-temperature relaxation of three-dimensional Ising ferromagnet. Phys. Rev. E 83, 051104-1–051104-11 (2011)

    ADS  Google Scholar 

  17. Rost

    Rost H.: Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 58, 41–53 (1981)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. Sch

    Schonmann R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20, 174–193 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  19. SKR

    Spirin V., Krapivsky P.L., Redner S.: Freezing in Ising ferromagnet. Phys. Rev. E 65, 016119-1–016119-9 (2001)

    ADS  Article  Google Scholar 

  20. TW

    Tracy C., Widom H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. vE

    van Enter A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987)

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references


MD thanks Eric Vigoda and Antonio Blanca for discussions related to the erosion times of boxes. MD and DS are grateful to Rob Morris for lengthy email discussions of coarsening dynamics. LP thanks Timo Seppäläinen and Benedek Valkó for helpful discussions on large deviation estimates in particle systems, and Ivan Corwin for useful remarks. MD is supported by an NSF CAREER grant. LP is partially supported by NSF Grant DMS-1664617. DS is supported by NSF Grants DMS-1418265 and CCF-1740761. We are grateful to anonymous referees for valuable suggestions.

Author information



Corresponding author

Correspondence to Leonid Petrov.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damron, M., Petrov, L. & Sivakoff, D. Coarsening Model on \({\mathbb{Z}^{d}}\) with Biased Zero-Energy Flips and an Exponential Large Deviation Bound for ASEP. Commun. Math. Phys. 362, 185–217 (2018).

Download citation