Skip to main content
Log in

Ill-Posedness of Leray Solutions for the Hypodissipative Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the ill-posedness of Leray solutions to the Cauchy problem for the hypodissipative Navier–Stokes equations, when the dissipative term is a fractional Laplacian \({(-\Delta)^\alpha}\) with exponent \({\alpha < \frac{1}{5}}\). The proof follows the “convex integration methods” introduced by the second author and László Székelyhidi Jr. for the incompressible Euler equations. The methods yield indeed some conclusions even for exponents in the range \({[\frac{1}{5}, \frac{1}{2}[}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buckmaster T.: Onsager’s conjecture almost everywhere in time. Commun. Mathe. Phys. 333(3), 1175–1198 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Buckmaster T., De Lellis C., Isett P., Székelyhidi L. Jr: Anomalous dissipation for 1/5-holder Euler flows. Ann. Math. 182(1), 127–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckmaster T., De Lellis C., Székelyhidi L. Jr: Dissipative Euler flows with Onsager-critical spatial regularity. Commun. Pure Appl. Math. 69(9), 1613–1670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckmaster, T., De Lellis, C., Székelyhidi, L., Jr., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. (2017). arXiv:1701.08678

  5. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. (2016). arXiv:1610.00676

  6. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Colombo, M., De Lellis, C., Massaccesi, A.: The generalized Caffarelli–Kohn–Nirenberg theorem for the hyperdissipative Navier–Stokes system. (2017). arXiv preprint arXiv:1712.07015

  8. Daneri S.: Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations. Commun. Math. Phys. 329(2), 745–786 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Daneri S., Székelyhidi L. Jr: Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Lellis C., Székelyhidi L. Jr: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. De Lellis C., Székelyhidi L. Jr: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467–1505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Rosa, L.: Infinitely many Leray–Hopf solutions for the fractional Navier–Stokes equations. arXiv:1801.10235

  13. Isett, P.: Holder continuous Euler flows with compact support in time. ProQuest LLC, Ann Arbor, MI (2013). Thesis (Ph.D.)—Princeton University

  14. Isett, P.: A Proof of Onsager’s conjecture. (2016). arXiv:1608.08301

  15. Isett P., Vicol V.: Hölder continuous solutions of active scalar equations. Ann. PDE 1(1), 1–77 (2015)

    Article  MathSciNet  Google Scholar 

  16. Jia H., Sverak V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jia H., Sverak V.: Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space?. J. Funct. Anal. 268(12), 3734–3766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  19. Ren W., Wang Y., Wu G.: Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. Commun. Contemp. Math. 18(6), 1650018 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roncal L., Stinga P.R.: Fractional Laplacian on the torus. Commun. Contemp. Math. 18(3), 1550033 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tang L., Yu Y.: Partial regularity of suitable weak solutions to the fractional Navier–Stokes equations. Commun. Math. Phys. 334(3), 1455–1482 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Tao T.: Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation. Anal. PDE 2(3), 361–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Colombo.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, M., De Lellis, C. & De Rosa, L. Ill-Posedness of Leray Solutions for the Hypodissipative Navier–Stokes Equations. Commun. Math. Phys. 362, 659–688 (2018). https://doi.org/10.1007/s00220-018-3177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3177-x

Navigation