Skip to main content
Log in

Multisolitons for the Defocusing Energy Critical Wave Equation with Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct multi-soliton solutions to the defocusing energy critical wave equation with potentials in \({\mathbb{R}^{3}}\) and study their asymptotic stability in the energy space based on both regular and reversed Strichartz estimates developed in [GC3]. We also study related scattering problems in the stable case. Since each soliton decays slowly with rate \({\frac{1}{\left\langle x\right\rangle }}\) , some refined estimates for the charge transfer model are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 131–175 (1999)

    Article  MathSciNet  Google Scholar 

  3. Beceanu M., Goldberg M.: Strichartz estimates and maximal operators for the wave equation in \({\mathbb{R}^{3}}\) . J. Funct. Anal. 266(3), 1476–1510 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen G.: Strichartz estimates for charge transfer models. Discret. Contin. Dyn. Syst. 37(3), 1201–1226 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chen, G.: Wave equations with moving potentials. Preprint (2016), arXiv:1610.09586

  6. Chen, G.: Strichartz estimates for wave equations with charge transfer Hamiltonians. Preprint (2016), arXiv:1610.05226

  7. Côte, R., Martel, Y.: Multi-travelling waves for the nonlinear Klein–Gordon equation. Preprint (2016), arXiv:1612.02625

  8. Côte R., Muñoz C.: Multi-solitons for nonlinear Klein–Gordon equations. Forum Math. Sigma 2(e15), 38 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Duyckaerts T., Kenig C., Merle F.: Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math. 1(1), 75–144 (2013)

    Article  MathSciNet  Google Scholar 

  10. Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Soliton resolution along a sequence of times for the focusing energy critical wave equation. Preprint (2016), arXiv:1601.01871

  11. Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. To appear in Am. J. Math. (2018), arXiv:1602.06524

  12. Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Preprint (2016), arXiv:1610.01093

  13. Jia H., Liu B.P., Xu G.X.: Long time dynamics of defocusing energy critical 3+1 dimensional wave equation with potential in the radial case. Commun. Math. Phys. 339(2), 353–384 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jia H., Liu B.P., Schlag W., Xu G.X.: Generic and non-generic behavior of solutions to defocusing energy critical wave equation with potential in the radial case. Int. Math. Res. Not. 2017(19), 5977–6035 (2016)

    MathSciNet  Google Scholar 

  15. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  16. Machihara S., Nakamura M., Nakanishi K., Ozawa T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  17. Martel Y.: Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103–1140 (2005)

    Article  MathSciNet  Google Scholar 

  18. Martel Y., Merle F.: Construction of multi-solitons for the energy-critical wave equation in dimension 5. Arch. Ration. Mech. Anal. 222(3), 1113–1160 (2016)

    Article  MathSciNet  Google Scholar 

  19. Merle F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129(2), 223–240 (1990)

    Article  ADS  Google Scholar 

  20. Muscalu, C., Schlag, W.: Classical and multilinear harmonic analysis. vol. I. Cambridge Studies in Advanced Mathematics, 138. Cambridge University Press, Cambridge (2013). xvi+324 pp

  21. Nakanishi, K., Schlag, W.: Invariant manifolds and dispersive Hamiltonian evolution equations. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2011). vi+253 pp

  22. Rodnianski I., Schlag W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, pp. 255–285. Princeton Universtiy Press, Princeton, NJ (2007)

  24. Strauss, W.: Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, 73. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1989). x+91 pp

  25. Tao, T.: Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). xvi+373 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Chen.

Additional information

Communicated by W. Schlag

This work is part of the author’s Ph.D. thesis at the University of Chicago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G. Multisolitons for the Defocusing Energy Critical Wave Equation with Potentials. Commun. Math. Phys. 364, 45–82 (2018). https://doi.org/10.1007/s00220-018-3170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3170-4

Navigation