Advertisement

Multisolitons for the Defocusing Energy Critical Wave Equation with Potentials

Article
  • 13 Downloads

Abstract

We construct multi-soliton solutions to the defocusing energy critical wave equation with potentials in \({\mathbb{R}^{3}}\) and study their asymptotic stability in the energy space based on both regular and reversed Strichartz estimates developed in [GC3]. We also study related scattering problems in the stable case. Since each soliton decays slowly with rate \({\frac{1}{\left\langle x\right\rangle }}\) , some refined estimates for the charge transfer model are also established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon.
    Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)MathSciNetMATHGoogle Scholar
  2. BH.
    Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 131–175 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. BecGo.
    Beceanu M., Goldberg M.: Strichartz estimates and maximal operators for the wave equation in \({\mathbb{R}^{3}}\) . J. Funct. Anal. 266(3), 1476–1510 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. GC1.
    Chen G.: Strichartz estimates for charge transfer models. Discret. Contin. Dyn. Syst. 37(3), 1201–1226 (2017)MathSciNetCrossRefMATHGoogle Scholar
  5. GC2.
    Chen, G.: Wave equations with moving potentials. Preprint (2016), arXiv:1610.09586
  6. GC3.
    Chen, G.: Strichartz estimates for wave equations with charge transfer Hamiltonians. Preprint (2016), arXiv:1610.05226
  7. CM1.
    Côte, R., Martel, Y.: Multi-travelling waves for the nonlinear Klein–Gordon equation. Preprint (2016), arXiv:1612.02625
  8. CM.
    Côte R., Muñoz C.: Multi-solitons for nonlinear Klein–Gordon equations. Forum Math. Sigma 2(e15), 38 (2014)MathSciNetMATHGoogle Scholar
  9. DKM.
    Duyckaerts T., Kenig C., Merle F.: Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math. 1(1), 75–144 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. DJKM.
    Duyckaerts, T., Jia, H., Kenig, C., Merle, F.: Soliton resolution along a sequence of times for the focusing energy critical wave equation. Preprint (2016), arXiv:1601.01871
  11. JJ1.
    Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. To appear in Am. J. Math. (2018), arXiv:1602.06524
  12. JJ2.
    Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Preprint (2016), arXiv:1610.01093
  13. JLX.
    Jia H., Liu B.P., Xu G.X.: Long time dynamics of defocusing energy critical 3+1 dimensional wave equation with potential in the radial case. Commun. Math. Phys. 339(2), 353–384 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. JLSX.
    Jia H., Liu B.P., Schlag W., Xu G.X.: Generic and non-generic behavior of solutions to defocusing energy critical wave equation with potential in the radial case. Int. Math. Res. Not. 2017(19), 5977–6035 (2016)MathSciNetGoogle Scholar
  15. KT.
    Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. MNNO.
    Machihara S., Nakamura M., Nakanishi K., Ozawa T.: Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation. J. Funct. Anal. 219(1), 1–20 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. Mart.
    Martel Y.: Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Am. J. Math. 127(5), 1103–1140 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. MM.
    Martel Y., Merle F.: Construction of multi-solitons for the energy-critical wave equation in dimension 5. Arch. Ration. Mech. Anal. 222(3), 1113–1160 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. Merle.
    Merle F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129(2), 223–240 (1990)ADSCrossRefMATHGoogle Scholar
  20. MS.
    Muscalu, C., Schlag, W.: Classical and multilinear harmonic analysis. vol. I. Cambridge Studies in Advanced Mathematics, 138. Cambridge University Press, Cambridge (2013). xvi+324 ppGoogle Scholar
  21. NS.
    Nakanishi, K., Schlag, W.: Invariant manifolds and dispersive Hamiltonian evolution equations. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2011). vi+253 ppGoogle Scholar
  22. RS.
    Rodnianski I., Schlag W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. Sch.
    Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, pp. 255–285. Princeton Universtiy Press, Princeton, NJ (2007)Google Scholar
  24. Strau.
    Strauss, W.: Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, 73. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1989). x+91 ppGoogle Scholar
  25. Tao.
    Tao, T.: Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). xvi+373 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations