Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Communications in Mathematical Physics
  3. Article

Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

  • Open Access
  • Published: 01 June 2018
  • volume 361, pages 53–80 (2018)
Download PDF

You have full access to this open access article

Communications in Mathematical Physics Aims and scope Submit manuscript
Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines
Download PDF
  • Wei Qian1 &
  • Wendelin Werner2 
  • 445 Accesses

  • 9 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Aidekon, E.: The Extremal Process in Nested Conformal Loops. Preprint (2015)

  2. Aru, J., Lupu, T., Sepúlveda, A.: First Passage Sets of the 2D Continuum Gaussian Free Field. arXiv e-prints (2017)

  3. Aru, J., Powell, E., Sepúlveda, A.: Approximating Liouville Measure Using Local Sets of the Gaussian Free Field. arXiv e-prints (2017)

  4. Aru, J., Sepúlveda, A.: (In preparation)

  5. Aru, J., Sepúlveda, A., Werner, W.: On bounded-type thin local sets (BTLS) of the two-dimensional Gaussian free field. J. Inst. Math. Jussieu (to appear)

  6. Beffara V.: The dimension of the SLE curves. Ann. Probab. 36, 1421–1452 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE(3). Ann. Probab. (to appear)

  8. Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris. 352(2), 157–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubédat J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22, 995–1054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duplantier, B., Miller, J.P., Sheffield, S.: Liouville Quantum Gravity as a Mating of Trees. arXiv e-prints (2014)

  11. Hongler C., Kytölä K.: Ising Interfaces and Free Boundary Conditions. J. Am. Math. Soc. 26, 1107–1189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Izyurov K., Kytölä K.: Hadamard’s formula and couplings of SLEs with free field. Probab. Theory Relat. Fields. 155, 35–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kemppainen A., Werner W.: The nested conformal loop ensembles in the Riemann sphere. Probab. Theory. Relat. Fields. 165, 835–866 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawler G.F., Schramm O., Werner W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16, 917–955 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lawler G.F., Trujillo-Ferreras J.: Random walk loop soup. Trans. Am. Math. Soc. 359, 767–787 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lawler G.F., Werner W.: The Brownian loop soup. Probab. Theory Relat. Fields. 128, 565–588 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le Jan Y.: Markov Paths, Loops and Fields. L.N. in Math 2026. Springer, Berlin (2011)

  18. Lupu, T.: From Loop clusters and random interlacement to the free field. Ann. Probab. (to appear)

  19. Lupu, T.: Convergence of the two-dimensional random walk loop soup clusters to CLE. J. Europ. Math. Soc. (to appear)

  20. Lupu, T., Werner, W.: A note on Ising, random currents, Ising-FK, loop-soups and the GFF. Electr. Commun. Probab. 21(13), 1–7 (2016)

  21. Miller, J.P., Sheffield, S.: Private communication (2010)

  22. Miller J.P., Sheffield S.: Imaginary geometry I. Interacting SLEs. Probab. Theory Relat. Fields. 64, 553–705 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller J.P., Sheffield S.: Imaginary geometry II. Reversibility of SLE\({{_\kappa (\rho_1;\rho_2)}}\) for \({{\kappa \in (0,4)}}\). Ann. Probab. 44, 1647–1722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miller J.P., Sheffield S.: Imaginary geometry III. Reversibility of SLE\({{_\kappa}}\) for \({{\kappa \in (4,8)}}\). Ann. Math. 184, 455–486 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, J.P., Sheffield, S., Werner, W. CLE percolations. Forum Math. Pi 5(e4), 1–102 (2017)

  26. Miller J.P, Wu H.: Intersections of SLE Paths: the double and cut point dimension of SLE. Probab. Theory Relat. Fields. 167, 45–105 (2017)

    Article  MATH  Google Scholar 

  27. Nacu Ş., Werner W.: Random soups, carpets and fractal dimensions. J. Lond. Math. Soc. 83, 789–809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Powell, E., Wu, H.: Level lines of the GFF with general boundary data. Ann. Inst. Henri Poincaré (to appear)

  29. Qian, W.: Conditioning a Brownian loop-soup cluster on a portion of its boundary. Ann. Inst. Henri Poincaré (to appear)

  30. Qian, W., Werner, W.: Decomposition of Brownian loop-soup clusters. J. Europ. Math. Soc. (to appear)

  31. Rohde S., Schramm O.: Basic properties of SLE. Ann. Math. 161, 883–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schramm O., Sheffield S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202, 21–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schramm O., Sheffield S.: A contour line of the continuous Gaussian free field, Probab. Theory Relat. Fields. 157, 47–80 (2013)

    Article  MATH  Google Scholar 

  35. Schramm O., Sheffield S., Wilson D.B.: Conformal radii for conformal loop ensembles. Commun. Math. Phys. 288, 43–53 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Schramm O., Wilson D.B.: SLE coordinate changes. N.Y.J. Math. 11, 659–669 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Sepúlveda, A.: On Thin Local Sets of the Gaussian Free Field. arXiv e-prints (2017)

  38. Sheffield S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147, 79–129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sheffield S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44(5), 3474–3545 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sheffield S., Werner W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. Math. 176, 1827–1917 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, M., Wu, H.: Level lines of Gaussian free field I: zero-boundary GFF. Stoch. Proc. Appl. (to appear)

  42. Wang, M., Wu, H.: Level Lines of Gaussian free field II: whole-plane GFF. arXiv e-prints (2015)

  43. Werner W.: SLEs as boundaries of clusters of Brownian loops. C. R. Math. Acad. Sci. Paris 337, 481–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Werner W.: Conformal restriction and related questions. Prob. Surv. 2, 145–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Werner, W.: Some recent aspects of random conformally invariant systems. Ecole d’été de physique des Houches LXXXIII, 57–99 (2006)

  46. Werner, W.: Topics on the Gaussian Free Field and CLE(4). Lecture Notes (2015)

  47. Werner, W.: On the spatial Markov property of soups of oriented and unoriented loops, in Sém. Probabilités XLVIII. Lecture Notes in Mathematics 2168. Springer, pp. 481–503 (2016)

  48. Werner W., Wu H.: On conformally invariant CLE explorations. Commun. Math. Phys. 320, 637–661 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Werner, W., Wu, H.: From CLE(\({{\kappa}}\)) to SLE(\({{\kappa, \rho}}\)), Electr. J. Prob. 18(36), 1–20 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center of Mathematical Sciences, Wilberforce Rd., Cambridge, CB3 0WB, UK

    Wei Qian

  2. Department of Mathematics, ETH Zürich, Rämistr. 101, 8092, Zurich, Switzerland

    Wendelin Werner

Authors
  1. Wei Qian
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wendelin Werner
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Wei Qian.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Werner, W. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines. Commun. Math. Phys. 361, 53–80 (2018). https://doi.org/10.1007/s00220-018-3159-z

Download citation

  • Received: 03 July 2017

  • Accepted: 02 March 2018

  • Published: 01 June 2018

  • Issue Date: July 2018

  • DOI: https://doi.org/10.1007/s00220-018-3159-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature