Communications in Mathematical Physics

, Volume 361, Issue 3, pp 1083–1113 | Cite as

Manifestations of Dynamical Localization in the Disordered XXZ Spin Chain

  • Alexander Elgart
  • Abel Klein
  • Günter Stolz


We study disordered XXZ spin chains in the Ising phase exhibiting droplet localization, a single cluster localization property we previously proved for random XXZ spin chains. It holds in an energy interval I near the bottom of the spectrum, known as the droplet spectrum. We establish dynamical manifestations of localization in the energy window I, including non-spreading of information, zero-velocity Lieb–Robinson bounds, and general dynamical clustering. Our results do not rely on knowledge of the dynamical characteristics of the model outside the droplet spectrum. A byproduct of our analysis is that for random XXZ spin chains this droplet localization can happen only inside the droplet spectrum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdul-Rahman H., Nachtergaele B., Sims R., Stolz G.: Localization properties of the XY spin chain. A review of mathematical results with an eye toward many-body localization. Ann. Phys. (Berlin) 529, 1600280 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdul-Rahman H., Stolz G.: A uniform area law for the entanglement of eigenstates in the disordered XY-chain. J. Math. Phys. 56, 121901 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aizenman M., Warzel S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290, 903–934 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aizenman, M., Warzel, S.: Random Operators. Disorder Effects on Quantum Spectra and Dynamics, Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence (2015)Google Scholar
  5. 5.
    Altshuler B.L., Gefen Y., Kamenev A., Levitov L.S.: Quasiparticle lifetime in a finite system: a nonperturbative approach. Phys. Rev. Lett. 78, 2803 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)ADSCrossRefGoogle Scholar
  7. 7.
    Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1d systems (2013). arXiv:1301.1162 [quant-ph]
  8. 8.
    Bardarson J.H., Pollmann F., Moore J.E.: Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Basko D.M., Aleiner I.L., Altshuler B.L.: Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Bauer, B., Nayak, C.: Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. P09005 (2013)Google Scholar
  11. 11.
    Beaud V., Warzel S.: Low-energy Fock-space localization for attractive hard-core particles in disorder. Ann. Henri Poincaré 10, 3143–3166 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Berkelbach T.C., Reichman D.R.: Conductivity of disordered quantum lattice models at infinite temperature: many-body localization. Phys. Rev. B 81, 224429 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Chulaevsky V., Suhov Y.: Multi-particle Anderson localisation: induction on the number of particles. Math. Phys. Anal. Geom. 12, 117–139 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Elgart A., Graf G.-M., Schenker J.H.: Equality of the bulk and edge Hall conductances in a mobility gap. Commun. Math. Phys. 259, 185–221 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Elgart A., Klein A.: An eigensystem approach to Anderson localization. J. Funct. Anal. 271, 3465–3512 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Elgart, A., Klein, A., Stolz, G.: Many-body localization in the droplet spectrum of the random XXZ quantum spin chain. J. Funct. Anal. (2018).
  17. 17.
    Elgart A., Klein A., Stolz G.: Droplet localization in the random XXZ model and its manifestations. J. Phys. A: Math. Theor. 51, 01LT02 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Evers F., Mirlin A.D.: Anderson transitions. Rev. Mod. Phys. 80, 1355 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Fischbacher C., Stolz G.: The infinite XXZ quantum spin chain revisited: structure of low lying spectral bands and gaps. Math. Model. Nat. Phenom. 9, 44–72 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fleishman L., Anderson P.W.: Interactions and the Anderson transition. Phys. Rev. B 21, 2366 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    Friesdorf M., Werner A.H., Brown W., Scholz V.B., Eisert J.: Many-body localization implies that eigenvectors are matrix-product states. Phys. Rev. Lett. 114, 170505 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Germinet F., Klein A.: A comprehensive proof of localization for continuous Anderson models with singular random potentials. J. Eur. Math. Soc. 15, 53–143 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Germinet F., Klein A., Schenker J.: Dynamical delocalization in random Landau Hamiltonians. Ann. Math. 166, 215–244 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gornyi I.V., Mirlin A.D., Polyakov D.G.: Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Imbrie J.: Diagonalization and many-body localization for a disordered quantum spin chain. Phys. Rev. Lett. 117, 027201 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Kirsch, W.: An invitation to random Schrödinger operators. In Random Schrödinger Operators, Panoramas et Synthèses, vol. 25. Societé Mathematique de France, Paris, pp. 1–119 (2008)Google Scholar
  29. 29.
    Klein A., Nguyen S.T.: The boostrap multiscale analysis for the multi-particle Anderson model. J. Stat. Phys. 151, 938–973 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Klein A., Perez J.F.: Localization in the ground-state of the one-dimensional XY model with a random transverse field. Commun. Math. Phys. 128, 99–108 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mastropietro V.: Localization in the ground state of an interacting quasi-periodic Fermionic chain. Commun. Math. Phys. 342, 217–250 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mastropietro V.: Localization in interacting Fermionic chains with quasi-random disorder. Commun. Math. Phys. 351, 283–309 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Monthus C., Garel T.: Many-body localization transition in a lattice model of interacting fermions: Statistics of renormalized hoppings in configuration space. Phys. Rev. B 81, 134202 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many-body physics, Entropy and the Quantum (Tucson, AZ, 2009). Contemp. Math. 529, pp. 141–176. American Mathematical Society, Providence (2010)Google Scholar
  35. 35.
    Nachtergaele B., Spitzer W., Starr S.: Droplet excitations for the spin-1/2 XXZ chain with kink boundary conditions. Ann. Henri Poincaré 8, 165–201 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nachtergaele B., Starr S.: Droplet states in the XXZ Heisenberg chain. Commun. Math. Phys. 218, 569–607 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Oganesyan V., Huse D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Pal A., Huse D.A.: The many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Prange, R.E., Girvin, S.M. (Eds.): The Quantum Hall Effect. Graduate Texts in Contemporary Physics, 2nd edn. Springer, New York (1990)Google Scholar
  40. 40.
    Serbyn M., Papic Z., Abanin D.A.: Criterion for many-body localization–delocalization phase transition. Phys. Rev. X 5, 041047 (2015)Google Scholar
  41. 41.
    Sims R., Warzel S.: Decay of determinantal and Pfaffian correlation functionals in one-dimensional lattices. Commun. Math. Phys. 347, 903–931 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Žnidarič M., Prosen T., Prelovšek P.: Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B 77, 064426 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsVirginia TechBlacksburgUSA
  2. 2.Department of MathematicsUniversity of California, IrvineIrvineUSA
  3. 3.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations