Skip to main content
Log in

Quantitative Uniform Propagation of Chaos for Maxwell Molecules

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove propagation of chaos at explicit polynomial rates in Wasserstein distance \({\mathcal{W}_{2}}\) for Kac’s N-particle system associated with the spatially homogeneous Boltzmann equation for Maxwell molecules. Our approach is mainly based on novel probabilistic coupling techniques. Combining them with recent stabilization results for the particle system we obtain, under suitable moments assumptions on the initial distribution, a uniform-in-time estimate of order almost \({N^{-1/3}}\) for \({\mathcal{W}_{2}^{2}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R.: A review of Boltzmann equation with singular kernels. Kinet. Relat. Models 2(4), 551–646 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

  3. Carrapatoso K.: Quantitative and qualitative Kac’s chaos on the Boltzmann’s sphere. Ann. Inst. Henri Poincaré Probab. Stat. 51(3), 993–1039 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cercignani, C.: The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences. Springer, New York (1988)

  5. Cortez R., Fontbona J.: Quantitative propagation of chaos for generalized Kac particle systems. Ann. Appl. Probab. 26(2), 892–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elmroth T.: Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch. Ration. Mech. Anal. 82(1), 1–12 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fontbona J., Guérin H., Méléard S.: Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. Probab. Theory Relat. Fields. 143(3–4), 329–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fontbona J., Guérin H., Méléard S.: Measurability of optimal transportation and strong coupling of martingale measures. Electron. Commun. Probab. 15, 124–133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fournier, N.: Finiteness of entropy for the homogeneous Boltzmann equation with measure initial condition. Ann. Appl. Probab. 25(2), 860–897 (2015)

  10. Fournier, N., Guillin, A.: From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules. Preprint, arXiv:1510.01123 (2015)

  11. Fournier N., Guillin A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fournier N., Méléard S.: A stochastic particle numerical method for 3D Boltzmann equations without cutoff (electronic). Math. Comput. 71(238), 583–604 (2002)

    Article  ADS  MATH  Google Scholar 

  13. Fournier N., Mischler S.: Rate of convergence of the Nanbu particle system for hard potentials and Maxwell molecules. Ann. Probab. 44(1), 589–627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabetta G., Toscani G., Wennberg B.: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81(5–6), 901–934 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gamba I. M., Panferov V., Villani C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246(3), 503–541 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Graham C., Méléard S.: Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25(1), 115–132 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grünbaum F. A.: Propagation of chaos for the Boltzmann equation. Arch. Ration. Mech. Anal. 42, 323–345 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hauray M., Mischler S.: On Kac’s chaos and related problems. J. Funct. Anal. 266(10), 6055–6157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III (Berkeley and Los Angeles), pp. 171–197 University of California Press (1956)

  20. McKean H. P. Jr.: An exponential formula for solving Boltzmann’s equation for a Maxwellian gas. J. Comb. Theory 2, 358–382 (1967)

    Article  MATH  Google Scholar 

  21. Méléard, S.: Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In: Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995), vol. 1627 of Lecture Notes in Mathematics, pp. 42–95. Springer, Berlin (1996)

  22. Mischler S., Mouhot C.: Kac’s program in kinetic theory. Invent. Math. 193(1), 1–147 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Povzner A. J.: On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.). 58(100), 65–86 (1962)

    MathSciNet  Google Scholar 

  25. Rousset, M.: A N-uniform quantitative Tanaka’s theorem for the conservative Kac’s N-particle system with Maxwell molecules. Preprint, arXiv:1407.1965 (2014)

  26. Sznitman A.-S.: Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete. 66(4), 559–592 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—1989, vol. 1464 of Lecture Notes in Mathematics, pp. 165–251. Springer, Berlin (1991)

  28. Tanaka, H.: On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. In: Proceedings of the International Symposium on Stochastic Differential Equations (Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 1976), pp. 409–425. Wiley, New York (1978)

  29. Tanaka, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete. 46(1), 67–105 (1978/1979)

  30. Toscani G., Villani C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3–4), 619–637 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)

  32. Villani, C.: Optimal Transport, Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)

  33. Wennberg B.: Entropy dissipation and moment production for the Boltzmann equation. J. Stat. Phys. 86(5–6), 1053–1066 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Fontbona.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortez, R., Fontbona, J. Quantitative Uniform Propagation of Chaos for Maxwell Molecules. Commun. Math. Phys. 357, 913–941 (2018). https://doi.org/10.1007/s00220-018-3101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3101-4

Navigation