Skip to main content
Log in

Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the problem of transforming a tripartite pure state to a bipartite one using stochastic local operations and classical communication (SLOCC). It is known that the tripartite-to-bipartite SLOCC convertibility is characterized by the maximal Schmidt rank of the given tripartite state, i.e. the largest Schmidt rank over those bipartite states lying in the support of the reduced density operator. In this paper, we further study this problem and exhibit novel results in both multi-copy and asymptotic settings, utilizing powerful results from the structure of matrix spaces. In the multi-copy regime, we observe that the maximal Schmidt rank is strictly super-multiplicative, i.e. the maximal Schmidt rank of the tensor product of two tripartite pure states can be strictly larger than the product of their maximal Schmidt ranks. We then provide a full characterization of those tripartite states whose maximal Schmidt rank is strictly super-multiplicative when taking tensor product with itself. Notice that such tripartite states admit strict advantages in tripartite-to-bipartite SLOCC transformation when multiple copies are provided. In the asymptotic setting, we focus on determining the tripartite-to-bipartite SLOCC entanglement transformation rate. Computing this rate turns out to be equivalent to computing the asymptotic maximal Schmidt rank of the tripartite state, defined as the regularization of its maximal Schmidt rank. Despite the difficulty caused by the super-multiplicative property, we provide explicit formulas for evaluating the asymptotic maximal Schmidt ranks of two important families of tripartite pure states by resorting to certain results of the structure of matrix spaces, including the study of matrix semi-invariants. These formulas turn out to be powerful enough to give a sufficient and necessary condition to determine whether a given tripartite pure state can be transformed to the bipartite maximally entangled state under SLOCC, in the asymptotic setting. Applying the recent progress on the non-commutative rank problem, we can verify this condition in deterministic polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett C.H., Wiesner S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cohen O.: Unlocking hidden entanglement with classical information. Phys. Rev. Lett. 80, 2493–2496 (1998)

    Article  ADS  Google Scholar 

  4. DiVincenzo D.P., Fuchs C.A., Mabuchi H., Smolin J.A., Thapliyal A., Uhlmann A.: Entanglement of Assistance, pp. 247–257. Springer, Berlin (1999)

    MATH  Google Scholar 

  5. Smolin J.A., Verstraete F., Winter A.: Entanglement of assistance and multipartite state distillation. Phys. Rev. A 72(5), 52317 (2005)

    Article  ADS  Google Scholar 

  6. Verstraete F., Popp M., Cirac J.I.: Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)

    Article  ADS  Google Scholar 

  7. Popp M., Verstraete F., Martín-Delgado M.A., Cirac J.I.: Localizable entanglement. Phys. Rev. A 71, 042306 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436(7051), 673–676 (2005)

    Article  ADS  Google Scholar 

  9. Gour G., Meyer D.A., Sanders B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)

    Article  ADS  Google Scholar 

  10. Fortescue B., Lo H.-K.: Random bipartite entanglement from W and W-like states. Phys. Rev. Lett. 98, 260501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gour G., Spekkens R.W.: Entanglement of assistance is not a bipartite measure nor a tripartite monotone. Phys. Rev. A 73, 062331 (2006)

    Article  ADS  Google Scholar 

  12. Gour G.: Entanglement of collaboration. Phys. Rev. A 74(5), 052307 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Yang D., Eisert J.: Entanglement combing. Phys. Rev. Lett. 103, 220501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Winter A.: On environment-assisted capacities of quantum channels. Markov Proc. Rel. Fields 13(1–2), 297–314 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Mendl C.B., Wolf M.M.: Unital quantum channels—convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gour G., Wallach N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2013)

    Article  ADS  Google Scholar 

  18. Chitambar E., Duan R., Shi Y.: Tripartite entanglement transformations and tensor rank. Phys. Rev. Lett. 101(14), 140502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yu N., Chitambar E., Guo C., Duan R.: Tensor rank of the tripartite state. Phys. Rev. A 81(1), 14301 (2010)

    Article  ADS  Google Scholar 

  20. Chen L., Chitambar E., Duan R., Ji Z., Winter A.: Tensor rank and stochastic entanglement catalysis for multipartite pure states. Phys. Rev. Lett. 105, 200501 (2010)

    Article  ADS  Google Scholar 

  21. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 62314 (2000)

    Article  MathSciNet  Google Scholar 

  22. Vidal G.: Entanglement of pure states for a single copy. Phys. Rev. Lett. 83(5), 1046–1049 (1999)

    Article  ADS  Google Scholar 

  23. Lo H.-K., Popescu S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63((2), 022301 (2001)

    Article  ADS  Google Scholar 

  24. Håstad J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chitambar E., Duan R., Shi Y.: Multipartite-to-bipartite entanglement transformations and polynomial identity testing. Phys. Rev. A 81(5), 52310 (2010)

    Article  ADS  Google Scholar 

  26. Edmonds J.: Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stand. Sect. B 71, 241–245 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Blum M., Kannan S.: Designing programs that check their work. J. ACM 42, 269–291 (1995)

    Article  MATH  Google Scholar 

  28. Agrawal M., Biswas S.: Primality and identity testing via chinese remaindering. J. ACM 50, 429–443 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwartz J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27, 701–717 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zippel R.: Probabilistic Algorithms for Sparse Polynomials, pp. 216–226. Springer, Berlin (1979)

    MATH  Google Scholar 

  31. Gurvits L.: Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69, 448–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Toda S.: Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Trans. Inf. Syst. E 75(D), 116–124 (1992)

    Google Scholar 

  33. Lovász L.: On determinants, matchings, and random algorithms. FCT 79, 565–574 (1979)

    MathSciNet  MATH  Google Scholar 

  34. Nisan, N., Wigderson, A.: Hardness vs. randomness. In: 29th Annual Symposium on Foundations of Computer Science, pp. 2–11. IEEE (1988)

  35. Kabanets V., Impagliazzo R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computat. Complex. 13(1/2), 1–46 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Yu N., Guo C., Duan R.: Obtaining a W state from a Greenberger–Horne–Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. Phys. Rev. Lett. 112(16), 160401 (2014)

    Article  ADS  Google Scholar 

  37. Vrana P., Christandl M.: Asymptotic entanglement transformation between W and GHZ states. J. Math. Phys. 56(2), 022204 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: A Deterministic Polynomial Time Algorithm for Noncommutative Rational Identity Testing. In: 57th Annual Symposium on Foundations of Computer Science, pp. 109–117. IEEE (2016)

  39. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Constructive Noncommutative Rank Computation in Deterministic Polynomial Time Over Fields of Arbitrary Characteristics. arXiv preprint arXiv:1512.03531 (2015)

  40. Barnum H., Nielsen M.A., Schumacher B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57(6), 4153 (1998)

    Article  ADS  Google Scholar 

  41. Fekete M.: Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten. Mathematische Zeitschrift 17, 228–249 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hall P.: On representatives of subsets. J. Lond. Math. Soc. S 1(10(1), 26–30 (1935)

    Article  MATH  Google Scholar 

  43. Room T.G.: The Geometry of Determinantal Loci. Cambridge University Press, Cambridge (1938)

    MATH  Google Scholar 

  44. Lovász L., Plummer M.: Matching Theory. North-Holland Mathematics Studies. Elsevier, Amsterdam (1986)

    Google Scholar 

  45. Lovász L.: Singular spaces of matrices and their application in combinatorics. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Math. Soc. 20((1), 87–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cohn P.M.: The word problem for free fields: a correction and an addendum. Proc. Lond. Math. Soc. 23, 193–213 (1971)

    Article  Google Scholar 

  47. Fortin M., Reutenauer C.: Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire 52, B52f (2004)

    MathSciNet  MATH  Google Scholar 

  48. Eisenbud D., Harris J.: Vector spaces of matrices of low rank. Adv. Math. 70(2), 135–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Derksen H., Makam V.: Polynomial degree bounds for matrix semi-invariants. Adv. Math. 310, 44–63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bürgin M., Draisma J.: The Hilbert null-cone on tuples of matrices and bilinear forms. Mathematische Zeitschrift 254(4), 785–809 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Adsul, B., Nayak, S., Subrahmanyam, K.V.: A Geometric Approach to the Kronecker Problem II: Rectangular Shapes, Invariants of Matrices and the Artin–Procesi Theorem, preprint (2007)

  52. Derksen H., Weyman J.: Semi-invariants of quivers and saturation for Littlewood–Richardson coefficients. J. Am. Math. Soc. 13(3), 467–479 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schofield A., Van den Bergh M.: Semi-invariants of quivers for arbitrary dimension vectors. Indagationes Mathematicae 12(1), 125–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Domokos M., Zubkov A. N.: Semi-invariants of quivers as determinants. Trans. Groups 6(1), 9–24 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Derksen H., Makam V.: Polynomial degree bounds for matrix semi-invariants. Adv. Math. 310, 44–63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: On Generating the Ring of Matrix Semi-invariants. arXiv:1508.01554 (2015)

  57. Hrubeš P., Wigderson A.: Non-commutative arithmetic circuits with division. Theory Comput. 11(14), 357–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ivanyos G., Qiao Y., Subrahmanyam K.V.: Non-commutative Edmonds’ problem and matrix semi-invariants. Comput. Complex. 26(3), 717–763 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  60. Wang X., Duan R.: Improved semidefinite programming upper bound on distillable entanglement. Phys. Rev. A 94((5), 050301 (2016)

    Article  ADS  Google Scholar 

  61. Wang, X., Duan, R.: Nonadditivity of Rains’ bound for distillable entanglement. Phys. Rev. A 95(6), 062322 (2007)

  62. Holevo A.S., Werner R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)

    Article  ADS  Google Scholar 

  63. Duan R., Severini S., Winter A.: Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans. Inf. Theory 59((2), 1164–1174 (2013)

    Article  MATH  Google Scholar 

  64. Wang, X., Duan, R.: A semidefinite programming upper bound of quantum capacity. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1690–1694. IEEE (2016)

  65. Wang, X., Xie, W., Duan, R.: Semidefinite programming strong converse bounds for classical capacity. IEEE Trans. Inf. Theory 64, 640–653 (2017)

  66. Smith G., Yard J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Ivanyos G., Karpinski M., Saxena N.: Deterministic polynomial time algorithms for matrix completion problems. SIAM J. Comput. 39(8), 3736–3751 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ash R.: Information Theory. Dover Books on Advanced Mathematics. Dover, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Li.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qiao, Y., Wang, X. et al. Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces. Commun. Math. Phys. 358, 791–814 (2018). https://doi.org/10.1007/s00220-017-3077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3077-5

Navigation