Advertisement

Communications in Mathematical Physics

, Volume 359, Issue 1, pp 61–100 | Cite as

Optimal Decay of Wannier functions in Chern and Quantum Hall Insulators

  • Domenico Monaco
  • Gianluca Panati
  • Adriano Pisante
  • Stefan Teufel
Article
  • 78 Downloads

Abstract

We investigate the localization properties of independent electrons in a periodic background, possibly including a periodic magnetic field, as e. g. in Chern insulators and in quantum Hall systems. Since, generically, the spectrum of the Hamiltonian is absolutely continuous, localization is characterized by the decay, as \({|x| \rightarrow \infty}\), of the composite (magnetic) Wannier functions associated to the Bloch bands below the Fermi energy, which is supposed to be in a spectral gap. We prove the validity of a localization dichotomy in the following sense: either there exist exponentially localized composite Wannier functions, and correspondingly the system is in a trivial topological phase with vanishing Hall conductivity, or the decay of any composite Wannier function is such that the expectation value of the squared position operator, or equivalently of the Marzari–Vanderbilt localization functional, is \({+ \infty}\). In the latter case, the Bloch bundle is topologically non-trivial, and one expects a non-zero Hall conductivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BFK.
    Bestwick A.J., Fox E.J., Kou X., Pan L., Wang K.L., Goldhaber-Gordon D.: Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015)ADSCrossRefGoogle Scholar
  2. BS.
    Birman, S.H., Suslina, T.A.: Periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity. Algebra i Analiz 11(2), 1–40 (1999); English translation in St. Petersburg Math. J. 11(2), 1–30 (2000)Google Scholar
  3. Bl.
    Blount, E.I.: Formalism of band theory. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics 13, pp. 305–373, Academic Press, Cambridge (1962)Google Scholar
  4. BPCM.
    Brouder Ch., Panati G., Calandra M., Mourougane Ch., Marzari N.: Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007)ADSCrossRefGoogle Scholar
  5. CLPS.
    Cancès É., Levitt A., Panati G., Stoltz G.: Robust determination of maximally-localized Wannier functions. Phys. Rev. B 95, 075114 (2017)ADSCrossRefGoogle Scholar
  6. CZK.
    Chang, C.Z. et al.: High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473 (2015)Google Scholar
  7. Cl1.
    des Cloizeaux J.: Energy bands and projection operators in a crystal: Analytic and asymptotic properties. Phys. Rev. 135, A685–A697 (1964)MathSciNetCrossRefGoogle Scholar
  8. Cl2.
    des Cloizeaux J.: Analytical properties of n-dimensional energy bands and Wannier functions. Phys. Rev. 135, A698–A707 (1964)MathSciNetCrossRefGoogle Scholar
  9. CHN.
    Cornean H.D., Herbst I., Nenciu G.: On the construction of composite Wannier functions. Ann. Henri Poincaré 17, 3361–3398 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. DZ.
    Dana I., Zak J.: Adams representation and localization in a magnetic field. Phys. Rev. B 28, 811 (1983)ADSCrossRefGoogle Scholar
  11. DNF.
    Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern geometry–methods and applications. Part II: The Geometry and Topology of Manifolds. No. 93 in Graduate Texts in Mathematics. Springer-Verlag, New York (1985)Google Scholar
  12. FMP.
    Fiorenza D., Monaco D., Panati G.: Construction of real-valued localized composite Wannier functions for insulators. Ann. Henri Poincaré 17, 63–97 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. FMP.
    Fiorenza, D., Monaco, D., Panati, G.: \({{\mathbb{Z}}_2}\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)Google Scholar
  14. FT.
    Freund S., Teufel S.: Peierls substitution for magnetic Bloch bands. Anal. PDE 9, 773–811 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. GMP.
    Giuliani A., Mastropietro V., Porta M.: Universality of the Hall conductivity in interacting electron systems. Commun. Math. Phys. 349, 1107–1161 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. GP.
    Guillemin V., Pollack A.: Differential Topology. American Mathematical Society, Providence (1974)MATHGoogle Scholar
  17. Hal.
    Haldane F.D.M.: Model for a quantum hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2017 (1988)ADSMathSciNetGoogle Scholar
  18. HL.
    Hang F., Lin F.H.: Topology of Sobolev mappings. II. Acta Math. 191, 55–107 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. HK.
    Hasan M.Z., Kane C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)ADSCrossRefGoogle Scholar
  20. HSj.
    Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. In: Holden, H., Jensen, A. (eds.) Schrödinger Operators, pp. 118–197, Lecture Notes in Physics 345, Springer, Berlin (1989)Google Scholar
  21. Hof.
    Hofstadter D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976)ADSCrossRefGoogle Scholar
  22. Hus.
    Husemoller, D.: Fibre Bundles, 3rd edn. No. 20 in Graduate Texts in Mathematics. Springer, New York (1994)Google Scholar
  23. Ka1.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)CrossRefMATHGoogle Scholar
  24. Ka2.
    Kato T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1972)MathSciNetCrossRefGoogle Scholar
  25. Ko.
    Kohn W.: Analytic properties of Bloch waves and Wannier Functions. Phys. Rev. 115, 809 (1959)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. Ku.
    Kuchment P.: An overview of periodic elliptic operators. Bull. AMS 53, 343–414 (2016)MathSciNetCrossRefMATHGoogle Scholar
  27. LL.
    Lieb, E.H., Loss, M.: Analysis, 2nd edn. No. 14 in Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)Google Scholar
  28. MV.
    Marzari N., Vanderbilt D.: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997)ADSCrossRefGoogle Scholar
  29. MYSV.
    Marzari N., Mostofi A.A., Yates J.R., Souza I., Vanderbilt D.: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012)ADSCrossRefGoogle Scholar
  30. Mo.
    Monaco, D.: Chern and Fu-Kane-Mele invariants as topological obstructions. Chapter 12. In: Dell’Antonio, G., Michelangeli, A. (eds.) Advances in QuantumMechanics: Contemporary Trends and Open Problems, vol. 18. Springer INdAM Series (2017) Google Scholar
  31. MP.
    Monaco D., Panati G.: Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry. Acta App. Math. 137, 185–203 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. Ne1.
    Nenciu G.: Existence of the exponentially localised Wannier functions. Commun. Math. Phys. 91, 81–85 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. Ne2.
    Nenciu G.: Dynamics of band electrons in electric and magnetic fields: Rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 63, 91–127 (1991)ADSCrossRefGoogle Scholar
  34. NN.
    Nenciu A., Nenciu G.: Dynamics of Bloch electrons in external electric fields. II. The existence of Stark–Wannier ladder resonances. J. Phys. A 15, 3313–3328 (1982)ADSMathSciNetCrossRefGoogle Scholar
  35. Pa.
    Panati G.: Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. PP.
    Panati G., Pisante A.: Bloch bundles, Marzari–Vanderbilt functional and maximally localized Wannier functions. Commun. Math. Phys. 322, 835–875 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. PST.
    Panati G., Spohn H., Teufel S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242, 547–578 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. PT.
    Peotta S., Törma P.: Superfluidity in topologically nontrivial flat bands. Nat. Commun. 8, 8944 (2015)CrossRefGoogle Scholar
  39. RZE.
    Rashba E.I., Zhukov L.E., Efros A.L.: Orthogonal localized wave functions of an electron in a magnetic field. Phys. Rev. B 55, 5306 (1997)ADSCrossRefGoogle Scholar
  40. RS.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. Volume IV: Analysis of Operators. Academic Press, New York (1978)MATHGoogle Scholar
  41. Rd.
    Read N.: Compactly-supported Wannier functions and algebraic K-theory. Phys. Rev. B 95, 115309 (2017)ADSCrossRefGoogle Scholar
  42. Re.
    Resta, R.: Geometry and topology in electronic structure physics. Lecture Notes. http://www-dft.ts.infn.it/~resta/gtse/draft.pdf (2016)
  43. RS.
    Runst T., Sickel W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, Berlin (1996)CrossRefMATHGoogle Scholar
  44. St.
    Stein E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)MathSciNetCrossRefMATHGoogle Scholar
  45. TV.
    Thonhauser T., Vanderbilt D.: Insulator/Chern-insulator transition in the Haldane model. Phys. Rev. B 74, 235111 (2006)ADSCrossRefGoogle Scholar
  46. Th.
    Thouless D.J.: Wannier functions for magnetic sub-bands. J. Phys. C 17, L325–L327 (1984)ADSCrossRefGoogle Scholar
  47. TKNN.
    Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)ADSCrossRefGoogle Scholar
  48. TPTH.
    Tovmasyan M., Peotta S., Törma P., Huber S.D.: Effective theory and emergent SU(2) symmetry in the flat bands of attractive Hubbard models. Phys. Rev. B 94, 245149 (2016)ADSCrossRefGoogle Scholar
  49. Zak1.
    Zak J.: Magnetic translation group. Phys. Rev. 134, A1602 (1964)ADSCrossRefMATHGoogle Scholar
  50. Zak2.
    Zak J.: Identities for Landau level orbitals. Europhys. Lett. 17, 443 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich Mathematik, Eberhard Karls Universität TübingenTübingenGermany
  2. 2.Dipartimento di Matematica“La Sapienza” Università di RomaRomeItaly

Personalised recommendations