Skip to main content
Log in

Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda \({\tau}\) -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel–Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J.: Weighted Hurwitz numbers and topological recursion: an overview. arXiv:1610.09408

  2. Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J.: Weighted Hurwitz numbers and topological recursion. Preprint CRM-3359 (2017)

  3. Alexandrov A.: Matrix models for random partitions. Nucl. Phys. B. 851, 620 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alexandrov A.: Enumerative geometry, tau-functions and Heisenberg-Virasoro algebra. Commun. Math. Phys. 338((1), 195 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alexandrov A., Lewanski D., Shadrin S.: Ramifications of Hurwitz theory, KP integrability and quantum curves. JHEP 1605, 124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Alexandrov A., Mironov A., Morozov A., Natanzon S.: Integrability of Hurwitz Partition Functions. I. Summary. J. Phys. A. 45, 045209 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Alexandrov A., Mironov A., Morozov A., Natanzon S.: On KP-integrable Hurwitz functions. JHEP 1411, 080 (2014)

  8. Alexandrov A., Zabrodin A.: Free fermions and tau-functions. J. Geom. Phys. 67, 37 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ambjørn J., Chekhov L.: The matrix model for dessins d’enfants. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 1, 337–361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borot G., Eynard B., Mulase M., Safnuk B.: A matrix model for Hurwitz numbers and topological recursion. J. Geom. Phys. 61, 522–540 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Borot G., Eynard B.: All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials. Quantum Topol. 6, 39–138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eynard B., Orantin N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42, 293001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eynard B., Orantin N.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theor. Phys. 8, 541–588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frobenius, G.: Über die Charaktere der symmetrischen Gruppe. Sitzber. Akad. Wiss., Berlin, pp. 516–534 (1900). Gesammelte Abhandlung III, 148–166

  15. Frobenius, G.: Über die Charakterische Einheiten der symmetrischen Gruppe. Sitzber. Akad. Wiss., Berlin, pp. 328–358 (1903). Gesammelte Abhandlung III, 244–274

  16. Goulden I.P., Guay-Paquet M., Novak J.: Monotone Hurwitz numbers and the HCIZ integral. Ann. Math. Blaise Pascal 21, 71–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goulden I.P., Guay-Paquet M., Novak J.: Toda equations and piecewise polynomiality for mixed double Hurwitz numbers. SIGMA 12, 040 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Goulden I.P., Jackson D.M.: Transitive factorisation into transpositions and holomorphic mappings on the sphere. Proc. Am. Math. Soc. 125(1), 51–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guay-Paquet M., Harnad J.: 2D Toda τ-functions as combinatorial generating functions. Lett. Math. Phys. 105, 827–852 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Guay-Paquet M., Harnad J.: Generating functions for weighted Hurwitz numbers. J. Math. Phys. 58, 083503 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Harnad J.: Quantum Hurwitz numbers and Macdonald polynomials. J. Math. Phys. 57, 113505 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Harnad J.: Weighted Hurwitz numbers and hypergeometric τ-functions: an overview. AMS Proc. Symp. Pure Math. 93, 289–333 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Harnad J., Orlov A.Yu.: Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions. J. Phys. A 39, 8783–8809 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Harnad J., Orlov A.Yu.: Hypergeometric τ-functions, Hurwitz numbers and enumeration of paths. Commun. Math. Phys. 338, 267–284 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hurwitz, A.: Über Riemann’sche Fläsche mit gegebnise Verzweigungspunkten. Math. Ann. 39, 1–61 (1891). Matematische Werke I, 321–384

  26. Hurwitz, A.: Über die Anzahl der Riemann’sche Fläsche mit gegebnise Verzweigungspunkten. Math. Ann. 55, 53–66 (1902). Matematische Werke I, 42–505

  27. Jimbo M., Miwa T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kac V., Schwarz A.S.: Geometric interpretation of the partition function of 2-D gravity. Phys. Lett. B 257, 329 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kazarian M., Zograf P.: Virasoro constraints and topological recursion for Grothendieck’s dessin counting. Lett. Math. Phys. 105, 1057–1084 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kharchev S., Marshakov A., Mironov A., Morozov A.: Generalized Kazakov–Migdal–Kontsevich model: group theory aspects. Int. J. Mod. Phys. A 10, 2015 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Macdonald I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  32. Mironov A.D., Morozov A.Yu., Natanzon S.M.: Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory. Theor. Math. Phys. 166, 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mulase M., Shadrin S., Spitz L.: The spectral curve and the Schrodinger equation of double Hurwitz numbers and higher spin structures. Commun. Number Theory Phys. 7, 125–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Natanzon S.M., Orlov A.Yu.: BKP and projective Hurwitz numbers. Lett. Math. Phys. 107, 1065–1109 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Okounkov A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447–453 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Okounkov A., Pandharipande R.: Gromov–Witten theory, Hurwitz theory, and completed cycles. Ann. Math. 163, 517–560 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Orlov A.Yu., Scherbin D.M.: Hypergeometric solutions of soliton equations. Theor. Math. Phys. 128, 906–926 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Orlov A.Y., Scherbin D.M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials. Theor. Math. Phys. 137, 1574–1589 (2003)

    Article  Google Scholar 

  39. Pandharipande R.: The Toda equations and the Gromov–Witten theory of the Riemann Sphere. Lett. Math. Phys. 53, 59–74 (2000)

    Article  MathSciNet  Google Scholar 

  40. Sato M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS Kyoto Univ. Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  41. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. In: Nonlinear PDE in Applied Science, Proceedings of U.S.–Japan Seminar, Tokyo 1982, Kinokuniya, Tokyo, pp. 259–271 (1983)

  42. Schur, I.: Neue Begründung’ der Theorie der Gruppencharaktere. Sitzber. Akad. Wiss., Berlin, pp. 406–432 (1905)

  43. Shadrin S., Spitz L., Zvonkine D.: On double Hurwitz numbers with completed cycles. J. Lond. Math. Soc. 86, 407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Segal G., Wilson G.: Loop groups and equations of KdV type. Pub. Math. l’IHÉS 6, 5–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takasaki, K.: Initial value problem for the Toda lattice hierarchy. In: Okamoto, K. (ed.) Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics, vol. 4, pp. 139–163. Elsevier (1984)

  46. Takasaki K.: Generalized string equations for double Hurwitz numbers. J. Geom. Phys. 62, 1135–1156 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Takebe T.: Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I. Lett. Math. Phys. 21, 77–84 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Ueno, K., Takasaki, K.: Toda Lattice Hierarchy. In: Okamoto, K. (ed.) Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics, vol. 4, pp. 1–95. Elsevier (1984)

  49. Vakil, R.: Enumerative Geometry of Curves via Degeneration Methods. Harvard Thesis (1997)

  50. Zograf P.: Enumeration of Grothendieck’s dessins and KP hierarchy. Int. Math Res. Not. 24, 13533–13544 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Harnad.

Additional information

Communicated by C. Schweigert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A., Chapuy, G., Eynard, B. et al. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion. Commun. Math. Phys. 360, 777–826 (2018). https://doi.org/10.1007/s00220-017-3065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3065-9

Navigation