Communications in Mathematical Physics

, Volume 358, Issue 3, pp 1151–1185 | Cite as

Non-fixation for Conservative Stochastic Dynamics on the Line

  • Riddhipratim Basu
  • Shirshendu Ganguly
  • Christopher Hoffman
Article
  • 25 Downloads

Abstract

We consider activated random walk (ARW), a model which generalizes the stochastic sandpile, one of the canonical examples of self organized criticality. Informally ARW is a particle system on \({\mathbb{Z}}\) with mass conservation. One starts with a mass density \({\mu > 0}\) of initially active particles, each of which performs a symmetric random walk at rate one and falls asleep at rate \({\lambda > 0}\). Sleepy particles become active on coming in contact with other active particles. We investigate the question of fixation/non-fixation of the process and show for small enough \({\lambda}\) the critical mass density for fixation is strictly less than one. Moreover, the critical density goes to zero as \({\lambda}\) tends to zero. This settles a long standing open question.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, G., Gurel-Gurevich, O.: On fixation of activated random walks. Electron. Commun. Probab. 12, 119–123 (2010)Google Scholar
  2. 2.
    Andjel E.D.: Invariant measures for the zero range processes. Ann. Probab. 10, 525–547 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bak P., Tang C., Wiesenfeld K.: Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Basu M., Basu U., Bandyopadhyay S., Mohanty P.K., Hinrichsen H.: Fixed-energy sandpiles belong generically to directed percolation. Phys. Rev. Lett. 109, 44–48 (2012)CrossRefGoogle Scholar
  5. 5.
    Bonachela J.A., Muñoz M.A.: Confirming and extending the hypothesis of universality in sandpiles. Phys. Rev. E 78, 041102 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Bond, B., Levine, L.: Abelian Networks I. Foundations and Examples. arXiv:1309.3445 (2013)
  7. 7.
    Cabezas, M., Rolla, L.T., Sidoravicius, V.: Recurrence and density decay for diffusion limited annihilating systems. Probab. Theor. Relat. Fields. arXiv:1309.4387 (to appear)
  8. 8.
    Cabezas M., Rolla L.T., Sidoravicius V.: Non-equilibrium phase transitions: activated random walks at criticality. J. Stat. Phys. 155(6), 1112–1125 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    da Cunha D.S., Vidigal R.R., da Silva R.L., Dickman R.: Diffusion in stochastic sandpiles. Eur. Phys. J. B 72(3), 441–449 (2009)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Dhar D.: The abelian sandpile and related models. Phys. A 263, 4–25 (1999)CrossRefGoogle Scholar
  11. 11.
    Diaconis P., Fulton W.: A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino 49(1), 95–119 (1991)MathSciNetMATHGoogle Scholar
  12. 12.
    Dickman R.: Nonequilibrium phase transitions in epidemics and sandpiles. Phys. A 306, 90–97 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dickman R., Alava M., Muñoz M.A., Peltola J., Vespignani A., Zapperi S.: Critical behaviour of a one-dimensional fixed-energy sandpile. Phys. Rev. E 64, 56104 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Dickman R., Muñoz M.A., Vespignani A., Zapperi S.: Paths to self-organized criticality. Braz. J. Phys. 30, 27 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Dickman R., Vespignani A., Zapperi S.: Self-organized criticality as an absorbing-state phase transition. Phys. Rev. E 57, 5095–5105 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Dickman R., Rolla L.T., Sidoravicius V.: Activated random walkers: facts, conjectures and challenges. J. Stat. Phys. 138(1–3), 126–142 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eriksson K.: Chip-firing games on mutating graphs. SIAM J. Discret. Math. 9(1), 118–128 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fey A., Levine L., Wilson D.B.: Driving sandpiles to criticality and beyond. Phys. Rev. Lett. 104(14), 145703 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In: Sidoravicius, V., Vares, M.E. (eds) In and Out of Equilibrium 2, pp. 331–364. Birkhäuser, Basel, Switzerland (2008)Google Scholar
  20. 20.
    Hough, B., Jerison, D., Levine, L.: Sandpiles on the Square Lattice. arXiv:1703.00827 (2017)
  21. 21.
    Jain K.: Simple sandpile model of active-absorbing phase transitions. Phys. Rev. E 72, 017105 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Kesten H., Sidoravicius V.: Branching random walk with catalysts. Electron. J. Probab. 8, 1–51 (2003)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kesten H., Sidoravicius V.: The spread of a rumor or infection in a moving population. Ann. Probab. 33, 2402–2462 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kesten H., Sidoravicius V.: A phase transition in a model for the spread of an infection. Ill. J. Math. 50, 547–634 (2006)MathSciNetMATHGoogle Scholar
  25. 25.
    Kesten H., Sidoravicius V.: A shape theorem for the spread of an infection. Ann. Math. 167, 701–766 (2008)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lee, S.B.: Comment on “Fixed-energy sandpiles belong generically to directed percolation”. Phys. Rev. Lett. 110, 159601 (2013)Google Scholar
  27. 27.
    Levine L.: Threshold state and a conjecture of poghosyan, poghosyan, priezzhev and ruelle. Commun. Math. Phys. 335(2), 1003–1017 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Levine L., Peres Y.: Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile. Potential Anal. 30(1), 1–27 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Liggett T.M.: Interacting Particle Systems. Springer, New York (1985)CrossRefMATHGoogle Scholar
  30. 30.
    Manna S.S.: Large-scale simulation of avalanche cluster distribution in sand pile model. J. Stat. Phys. 59, 509–521 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    Manna S.S.: Two-state model of self-organized criticality. J. Phys. A Math. Gen. 24, L363–L369 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    Marro J., Dickman R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999)CrossRefMATHGoogle Scholar
  33. 33.
    Rolla L.T., Sidoravicius V.: Absorbing-state phase transition for driven-dissipative stochastic dynamics on \({\mathbb{Z}}\). Invent. Math. 188, 127–150 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Rolla L.T., Sidoravicius V.: Absorbing-state phase transition for driven-dissipative stochastic dynamics on \({\mathbb{Z}}\). Invent. Math. 188(1), 127–150 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rolla, L.T.: Activated Random Walks. Lecture Notes. arXiv:1507.04341(2015)
  36. 36.
    Rolla, L.T., Tournier, L.: Sustained Activity for Biased Activated Random Walks at Arbitrarily Low Density. arXiv:1507.04732 (2015)
  37. 37.
    Rossi M., Pastor-Satorras R., Vespignani A.: Universality class of absorbing phase transitions with a conserved field. Phys. Rev. Lett. 85, 1803–1806 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    Shellef E.: Nonfixation for activated random walks. ALEA 7, 137149 (2010)MathSciNetMATHGoogle Scholar
  39. 39.
    Sidoravicius, V., Teixeira, A.: Absorbing-State Transition for Stochastic Sandpiles and Activated Random Walks. arXiv:1412.7098 (2014)
  40. 40.
    Stauffer, A., Taggi, L.: Critical Density of Activated Random Walks on \({\mathbb{Z}^d}\) and General Graphs. arXiv:1512.02397 (2015)
  41. 41.
    Taggi, L.: Absorbing-state phase transition in biased activated random walk, Electron. J. Probab. 21, 1–15 (2016)Google Scholar
  42. 42.
    Vespignani A., Dickman R., Muñoz M.A., Zapperi S.: Driving, conservation, and absorbing states in sandpiles. Phys. Rev. Lett. 81, 5676–5679 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Vespignani A., Dickman R., Muñoz M.A., Zapperi S.: Absorbing-state phase transitions in fixed-energy sandpiles. Phys. Rev. E 62, 4564–4582 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Vidigal R., Dickman R.: Asymptotic behavior of the order parameter in a stochastic sandpile. J. Stat. Phys. 118(1), 1–25 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Riddhipratim Basu
    • 1
  • Shirshendu Ganguly
    • 2
  • Christopher Hoffman
    • 3
  1. 1.International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBangaloreIndia
  2. 2.Departments of Statistics and MathematicsUC BerkeleyBerkeleyUSA
  3. 3.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations