Perturbative Quantum Gauge Theories on Manifolds with Boundary
Article
First Online:
- 109 Downloads
- 1 Citations
Abstract
This paper introduces a general perturbative quantization scheme for gauge theories on manifolds with boundary, compatible with cutting and gluing, in the cohomological symplectic (BV–BFV) formalism. Explicit examples, like abelian BF theory and its perturbations, including nontopological ones, are presented.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Albert, C., Bleile, B., Fröhlich, J.: Batalin–Vilkovisky integrals in finite dimensions. J. Math. Phys. 51(1), 015213 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 2.Alekseev A., Mnev P.: One-dimensional Chern–Simons theory. Commun. Math. Phys. 307, 185–227 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 3.Alexandrov M., Kontsevich M., Schwarz A., Zaboronsky O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A12, 1405–1430 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 4.Anselmi D.: A general field-covariant formulation of quantum field theory. Eur. Phys. J. C 73(3), 1–19 (2013)Google Scholar
- 5.Atiyah M.: Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 68, 175–186 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Axelrod S., Della Pietra S., Witten E.: Geometric quantization of Chern Simons gauge theory. Representations 34, 39 (1991)zbMATHGoogle Scholar
- 7.Axelrod, S., Singer, I.M.: Chern–Simons perturbation theory. In: Catto, S., Rocha, A. (eds.) Proceedings of the XXth DGM Conference, pp. 3–45. World Scientific, Singapore (1992)Google Scholar
- 8.Axelrod S., Singer I.M.: Chern–Simons perturbation theory. II. J. Differ. Geom. 39, 173–213 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Bar-Natan D.: On the Vassiliev knot invariants. Topology 34, 423–472 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. B 102, 27 (1981)ADSMathSciNetCrossRefGoogle Scholar
- 11.Batalin I.A., Fradkin E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 12.Batalin I.A., Vilkovisky G.A.: Relativistic S-matrix of dynamical systems with boson and fermion costraints. Phys. Lett. B 69(3), 309–312 (1977)ADSCrossRefGoogle Scholar
- 13.Bates, S., Weinstein, A.: Lectures on the geometry of quantization. Berkeley Mathematics Lecture Notes, vol. 8 (1997)Google Scholar
- 14.Bonechi F., Cattaneo A.S., Mnev P.: The Poisson sigma model on closed surfaces. JHEP 2012(99), 1–27 (2012)zbMATHGoogle Scholar
- 15.Bott R., Cattaneo A.S.: Integral invariants of 3-manifolds. J. Differ. Geom. 48, 91–133 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Cappell S., DeTurck D., Gluck H., Miller E.Y.: Cohomology of harmonic forms on Riemannian manifolds with boundary. Forum Math. 18, 923–931 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Cattaneo, A.S.: Configuration space integrals and invariants for 3-manifolds and knots. In: Nencka, H. (ed.) Low Dimensional Topology, Cont. Math., vol. 233, pp. 153–165 (1999)Google Scholar
- 18.Cattaneo A.S., Contreras I.: Relational symplectic groupoids. Lett. Math. Phys. 105, 723–767 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 19.Cattaneo A.S., Felder G.: A path integral approach to the Kontsevich deformation quantization formula. Commun. Math. Phys. 212(3), 591–611 (2000)ADSCrossRefzbMATHGoogle Scholar
- 20.Cattaneo A.S., Felder G.: Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model. Lett. Math. Phys. 69, 157–175 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 21.Cattaneo A.S., Felder G.: Effective Batalin–Vilkovisky theories, equivariant configuration spaces and cyclic chains. Prog. Math. 287, 111–137 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Cattaneo A.S., Mnev P.: Remarks on Chern–Simons invariants. Commun. Math. Phys. 293, 803–836 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 23.Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014). arXiv:1201.0290
- 24.Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical and quantum Lagrangian field theories with boundary. In: Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics and Gravity. PoS CORFU2011 (2011) 044. arXiv:1207.0239
- 25.Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Cellular BV–BFV–BF theory (in preparation)Google Scholar
- 26.Cattaneo, A.S., Mnev, P., Wernli, K.: Split Chern–Simons theory in the BV–BFV formalism. In: Cardona, A. et al. (eds.) Quantization, Geometly and Noncommutative structures in Mathematics and Physics. Mathematical Physics Studies. Springer (2017)Google Scholar
- 27.Cattaneo A.S., Rossi C.A.: Higher-dimensional BF theories in the Batalin–Vilkovisky formalism: the BV action and generalized Wilson loops. Commun. Math. Phys. 221, 591–657 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 28.Cheeger J.: Analytic torsion and the heat equation. Ann. Math. 109((2), 259–322 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Collins J.C.: Renormalization. Cambridge University Press, Cambridge (1986)Google Scholar
- 30.Costello, K.: Renormalization and Effective Field Theory, vol. 170. AMS (2011)Google Scholar
- 31.Felder, G., Kazhdan, D.: The classical master equation. In: Perspectives in Representation Theory. Cont. Math. arXiv:1212.1631
- 32.Friedrichs K.O.: Differential forms on Riemannian manifolds. Commun. Pure Appl. Math. 8, 551–590 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Fröhlich J., King C.: The Chern–Simons theory and knot polynomials. Commun. Math. Phys. 126(1), 167–199 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 34.Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. Math. 139, 183–225 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 35.Gelfand I., Kazhdan D.: Some problems of differential geometry and the calculation of the cohomology of Lie algebras of vector fields. Sov. Math. Dokl. 12, 1367–1370 (1971)zbMATHGoogle Scholar
- 36.Ibort, A., Spivak, A.: Covariant Hamiltonian field theories on manifolds with boundary: Yang–Mills theories. arXiv:1506.00338
- 37.Khudaverdian H.: Semidensities on odd symplectic supermanifolds. Commun. Math. Phys. 247(2), 353–390 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 38.Kontsevich, M.: Feynman Diagrams and Low-Dimensional Topology. First European Congress of Mathematics, Paris 1992, Volume II, Progress in Mathematics, vol. 120. Birkhäuser, p. 120 (1994)Google Scholar
- 39.Kontsevich M.: Vassiliev’s knot invariants. Adv. Sov. Math. 16, 137–150 (1993)MathSciNetzbMATHGoogle Scholar
- 40.Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 41.Lück W.: Analytic and topological torsion for manifolds with boundary and symmetry. J. Differ. Geom. 37(2), 263–322 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s I. J. Reine Angew. Math. 634, 51–106 (2009)MathSciNetzbMATHGoogle Scholar
- 43.Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s II. J. Reine Angew. Math. 636, 123–174 (2009)MathSciNetzbMATHGoogle Scholar
- 44.Milnor J.: A duality theorem for Reidemeister torsion. Ann. Math. 76, 137–147 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
- 45.Mnev, P.: Discrete BF theory. arXiv:0809.1160
- 46.Morrey C.B. Jr: A variational method in the theory of harmonic integrals, II. Am. J. Math. 78, 137–170 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
- 47.Ray D.B., Singer I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
- 48.Schätz F.: BFV-complex and higher homotopy structures. Commun. Math. Phys. 286, 399–443 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 49.Schlegel, V.: Gluing manifolds in the Cahiers topos. arXiv:1503.07408 [math.DG]
- 50.Schwarz A.S.: The partition function of degenerate quadratic functionals and Ray–Singer invariants. Lett. Math. Phys. 2, 247–252 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 51.Schwarz A.S.: Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155(2), 249–260 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 52.Schwarz, A.S.: Topological quantum field theories. arXiv:hep-th/0011260
- 53.Segal, G.: The definition of conformal field theory. In: Differential Geometrical Methods in Theoretical Physics. Springer, Netherlands, pp. 165–171 (1988)Google Scholar
- 54.Ševera P.: On the origin of the BV operator on odd symplectic supermanifolds. Lett. Math. Phys. 78, 55–59 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 55.Stasheff J.: Homological reduction of constrained Poisson algebras. J. Differ. Geom. 45, 221–240 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 56.Stolz, S., Teichner, P.: Supersymmetric Euclidean field theories and generalized cohomology, a survey. preprint (2008)Google Scholar
- 57.Turaev V.: Introduction to Combinatorial Torsions. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
- 58.Vishik S.M.: Generalized Ray–Singer conjecture. I. A manifold with a smooth boundary. Commun. Math. Phys. 167(1), 1–102 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 59.Witten E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153–209 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 60.Wu S.: Topological quantum field theories on manifolds with a boundary. Commun. Math. Phys. 136, 157–168 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2017